Browse > Article

Relationship Between Fractal Dimension and Morphological Features of Cephalosporium acremonium M25 in a 30-1 Bioreactor Culture  

Lim Jung-Soo (Department of Chemical and Biological Engineering, Korea University)
Kim Jung-Mo (Department of Chemical and Biological Engineering, Korea University)
Kim Jong-Chae (Department of Chemical and Biological Engineering, Korea University)
Kim Chang-Ho (Bio M&D Co.)
Yang Dae-Ryook (Department of Chemical and Biological Engineering, Korea University)
Chang Hyo-Ihl (Graduate School of Biotechnology, Korea University)
Kim Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.5, 2005 , pp. 971-976 More about this Journal
Abstract
In a 30-1 bioreactor culture, whole differentiation occurred from 48 h, and then proceeded rapidly. As swollen hyphal fragments and arthrospores increased, cephalosporin C (CPC) production increased exponentially to $1.85\;g/1^{-1}$ at 72 h. To explain the morphological changes of Cephalosporium acremonium M25 more quantitatively, specific differentiation rates and fractal analysis were employed. Specific differentiation rates of morphological factors varied greatly during the period of culture time from 48 h to 72 h, when CPC production increased significantly. Changes of fractal dimensions showed a pattern similar to that of the specific rate of arthrospores. Furthermore, it was inversely related to the specific rate of tips. Overall, it was suggested that the fractal dimension had potential for a new morphological parameter of fungal morphology, showing complex differentiation patterns.
Keywords
Cephalosporin C; Cephalosporium acremonium M25; fractal dimension; morphology; specific differentiation rate;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Huo, C., X. H. Ren, B. P. Liu, Y. R. Yang, and S. X. Rong. 2003. Fractal approach for modeling the morphology evolution of olefin polymerization with heterogeneous catalysis. J. Appl. Polym. Sci. 90: 1463-1470   DOI   ScienceOn
2 Hwang, E. I., B. S. Yun, S. H. Lee, S. K. Kim, S. J. Lim, and S. U. Kim. 2004. 7-Oxostaurosporine selectively inhibits the mycelial form of Candida albicans. J. Microbiol. Biotechnol. 14: 1067-1070
3 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428   DOI
4 Patankar, D. B., T. Liu, and T. Oolman. 1993. A fractal model for the characterization of mycelial morphology. Biotechnol. Bioeng. 42: 571-578   DOI   ScienceOn
5 Cox, P. W. and C. R. Thomas. 1992. Classification and measurement of fungal pellets by automated image analysis. Biotechnol. Bioeng. 39: 945-952   DOI   PUBMED
6 Justen, P., G. C. Paul, A. W. Nienow, and C. R. Thomas. 1998. Dependence of Penicillium chrysogenum growth, morphology, vacuolation, and productivity in fed-batch fermentations on impeller type and agitation intensity. Biotechnol. Bioeng 59: 762- 775   DOI   ScienceOn
7 Ryoo, D. H. 1999. Fungal fractal morphology of pellet formation in Aspergillus niger. Biotechnol. Tech. 13: 33-36   DOI
8 Braun, S. and S. E. Vecht-Lifshitz. 1991. Mycelial morphology and metabolite production. Trends Biotechnol. 9: 63-68   DOI
9 Nielsen, J. and P. Krabben. 1995. Hyphal growth and fragmentation of Penicillium chrysogenum in submerged cultures. Biotechnol. Bioeng. 46: 588-598   DOI   ScienceOn
10 Van Suijdam, J. C. and B. Metz. 1981. Influence of engineering variables upon the morphology of filamentous molds. Biotechnol. Bioeng. 23: 111-148   DOI
11 Obert, M., P. Pfeifer, and M. Sernetz. 1990. Microbial growth patterns described by fractal geometry. J. Bacteriol. 172: 1180-1185   DOI
12 Lee, M. S., J. S. Lim, C. H. Kim, K. K. Oh, S. I. Hong, and S. W. Kim. 2001. Effects of nutrient and culture conditions on morphology in the seed culture of Cephalosporium acremonium ATCC 20339. Biotechnol. Bioprocess Eng. 6: 156-160   DOI   ScienceOn
13 Shamlou, P. A., H. Y. Makagiansar, A. P. Ison, and M. D. Lilly. 1994. Turbulent breakage of filamentous microorganisms in submerged culture in mechanically stirred bioreactors. Chem. Eng. Sci. 49: 2621-2631   DOI   ScienceOn
14 Kim, B. M., S. W. Kim, and D. R. Yang. 2003. Cybernetic modeling of the cephalosporin C fermentation process by Cephalosporium acremonium. Biotechnol. Left. 25: 611-616   DOI   ScienceOn
15 Lim, J. S., J. H. Kim, C. Y. Kim, and S. W. Kim. 2002. Morphological and rheological properties of culture broth of Cephalosporium acremonium M25. Korea-Australia Rheology J. 14: 11-16
16 Kim, H. H., J. G. Na, Y. K. Chang, G. T. Chun, S. J. Lee, and Y. H. Jeong. 2004. Optimization of submerged culture conditions for mycelial growth and exopolysaccharides production by Agaricus blazei. J. Microbiol. Biotechnol. 14: 944-951
17 Yang, B. K., M. A. Wilson, K. Y. Cho, and C. H. Song. 2004. Hypoglycemic effect of exo- and endo-biopolymer produced by submerged mycelial culture of Ganoderma lucidum in streptozotocin-induced diabetic rats. J. Microbiol. Biotechnol. 14: 972-977
18 Park, E. Y., T. Hamanaka, and K. Higashiyama. 2002. Monitoring of morphological development of the arachidonic-acid-producing filamentous microorganism Mottierella alpina. Appl. Microbiol. Biotechnol. 59: 706-712   DOI   ScienceOn
19 Kim, C. Y., H. J. Park, Y. J. Yoon, H. Y. Kang, and E. S. Kim. 2004. Stimulation of actinorhodin production by Streptomyces lividans with a chromosomally-integrated antibiotic regulatory gene afsR2. J. Microbiol. Biotechnol. 14: 1089-1092
20 Lee, M. S., J. S. Lim, C. H. Kim, K. K. Oh, D. R. Yang, and S. W. Kim. 2001. Enhancement of cephalosporin C production by cultivation of Cephalosporium acremonium M25 using a mixture of inocula. Lett. Appl. Microbiol. 32: 402-406   DOI   ScienceOn