Browse > Article

Chloramphenicol Arrests Transition of Cell Cycle and Induces Apoptotic Cell Death in Myelogenous Leukemia Cells  

KANG KI YOUNG (Department of Anatomy, Seonam University College of Medicine)
CHOI CHUL HEE (Department of Microbiology and Institute of Infectious Diseases, Kyungpook National University School of Medicine)
OH JAE YOUNG (Department of Microbiology and Institute of Infectious Diseases, Kyungpook National University School of Medicine)
KIM HYUN (Department of Anatomy, Kosin University College of Medicine)
KWEON GI RYANG (Department of Biochemistry, Seonam University College of Medicine)
LEE JE CHUL (Department of Microbiology and Institute of Infectious Diseases, Kyungpook National University School of Medicine)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.5, 2005 , pp. 913-918 More about this Journal
Abstract
Chloramphenicol is a broad-spectrum antimicrobial agent against Gram (+) and Gram (-) bacteria. Its clinical application has recently been limited, due to severe side effects such as bone marrow suppression and aplastic anemia. In the present study, the cytotoxic effects of chloramphenicol were investigated in vitro using chronic myelogenous leukemia K562 cells. Chloramphenicol inhibited the growth of K562 cells in a dose-dependent manner, but their growth was restored after the cessation of chloramphenicol, indicating reversible cytotoxic effects. The expression of cell cycle regulatory molecules, including E2F-1 and cyclin D1, was decreased at the translational and/or transcriptional level after being treated with a therapeutic blood level ($20{\mu}g/ml$) of chloramphenicol. Chloramphenicol also induced apoptotic cell death through a caspase-dependent pathway, which was verified by Western blot analysis and the enzymatic activity of caspase-3. These results demonstrated that chloramphenicol inhibited the cell growth through arresting the transition of the cell cycle, and induced apoptotic cell death through a caspase-dependent pathway at therapeutic concentrations.
Keywords
Chloramphenicol; cell cycle; apoptosis;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Gong, J., F. Traganos, and Z. Darzynkiewicz. 1994. A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal. Biochem. 218: 314-319   DOI   ScienceOn
2 Harbour, J. W. and D. C. Dean. 2000. Rb function in cell-cycle regulation and apoptosis. Nat. Cell Biol. 2: E65-67   DOI   ScienceOn
3 Kim, N. S., K. H. Chang, B. S. Chung, S. H. Kim, J. H. Kim, and G. M. Lee. 2003. Characterization of humanized antibody produced by apoptosis-resistant CHO cells under sodium butyrate-induced condition. J. Microbiol. Biotechnol. 13: 926-936
4 Lim, H., M. K. Kim, Y.-H. Cho, J. M. Kim, Y. Lim, and C.-H. Lee. 2004. Inhibition of cell cycle progression and induction of apoptosis in HeLa cells by HY558-1, a novel CDK inhibitor isolated from Penicillium minioluteum F558. J. Microbiol. Biotechnol. 14: 978-984
5 Miller, A. M. and A. A. Yunis. 1982. Nitroso-chloramphenicol: Cell cycle specificity of action. Pharmacology 24: 61-66   DOI   ScienceOn
6 Ohtsubo, M., A. M. Theodoras, J. Schumacher, J. M. Roberts, and M. Pagano. 1995. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol. Cell. Biol. 15: 2612-2624   DOI
7 Yunis, A. A. 1989. Chloramphenicol toxicity: 25 years of research. Am. J. Med. 87: 44N-48N
8 Yunis, A. A., A. M. Miller, Z. Salem, and G. K. Arimura. 1980. Chloramphenicol toxicity: Pathogenetic mechanisms and the role of the p-$NO_{2}$ in aplastic anemia. Clin. Toxicol. 17: 359-373   DOI   PUBMED
9 Nurse, P. 1994. Ordering of S phase and M phase in the cell cycle. Cell 79: 547-550   DOI   PUBMED   ScienceOn
10 Firkin, F. C. and A. W. Linnane. 1968. Differential effects of chloramphenicol on the growth and respiration of mammalian cells. Biochem. Biophys. Res. Commun. 32: 398-402   DOI   ScienceOn
11 Ohtsubo, M. and J. M. Roberts. 1993. Cyclin-dependent regulation of G1 in mammalian fibroblasts. Science 259: 1908-1912   DOI   PUBMED
12 Leiter, L. M., H. S. Thatte, C. Okafor, P. W. Marks, D. E. Golan, and K. R. Bridges. 1999. Chloramphenico]-induced mitochondrial dysfunction is associated with decreased transferrin receptor expression and ferritin synthesis in K562 cells and is unrelated to IRE-IRP interactions. J. Cell. Physiol. 180: 334-344   DOI   ScienceOn
13 Hartwell, L. H. and T. A. Weinert. 1989. Checkpoints: Controls that ensure the order of cell cycle events. Science 246: 629-634   DOI   PUBMED
14 Yao, J. D. C. and R. C. Moellering, Jr. 1999. Antibacterial agents, pp. 1474-1504. In P. R. Murray, E. J. Baron, M. A. Pfaller, F. C. Tenover, and R. H. Yolken (eds.). Manual of Clinical Microbiology. 7th ed. American Society for Microbiology, Washington DC, U.S.A
15 Robbana-Barnat, S., F. Dec]oitre, C. Frayssinet, J. M. Seigneurin, L. Toucas, and C. Lafarge-Frayssinet. 1997. Use of human lymphoblastoid cells to detect the toxic effect of chloramphenicol and metabolites possibly involved in aplastic anemia in man. Drug Chem. Toxicol. 20: 239-253   DOI   ScienceOn
16 Salem, Z., T. Murray, and A. A. Yunis. 1981. The nitroreduction of chloramphenicol by human liver tissue. J. Lab. Clin. Med. 97: 881-886
17 Guimaraes, C. A. and R. Linden. 2000. Chloramphenicol induces apoptosis in the developing brain. Neuropharmacol. 39: 1673-1679   DOI   ScienceOn
18 Murray, T. R., K. M. Downey, and A. A. Yunis. 1983. Chloramphenicol-mediated DNA damage and its possible role in the inhibitory effects of chloramphenicol on DNA synthesis. J. Lab. Clin. Med. 102: 926-932
19 Kato, J., H. Matsushime, S. W. Hiebert, M. E. Ewen, and C. J. Sherr. 1993. Direct binding of cyclin D to the retinoblastoma product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase cdk4. Genes Dev. 7: 331-342   DOI   ScienceOn
20 Kim, M. K., Y.-H. Cho, J. M. Kim, M. W. Chun, S. K. Lee, Y. Lim, and C.-H. Lee. 2003. Inhibition of cell-cycle progression in human promyelocytic leukemia HL-60 cells by MCS-C2, novel cyclin-dependent kinase inhibitor. J. Microbiol. Biotechnol. 13: 607-612
21 Lafarge-Frayssinet, C., S. Robbana-Barnat, C. Frayssinet, L. Toucas, and F. Decloitre. 1994. Cytotoxicity and DNA damaging potency of chloramphenicol and six metabolites: A new evaluation in human lymphocytes and Raji cells. Mutat. Res. 320: 207-215   DOI   ScienceOn
22 Cardoso, M. C., H. Leonhardt, and B. Nadal-Ginard. 1993. Reversal of terminal differentiation and control of DNA replication: Cyclin A and cdk2 specifically localize at subnuclear sites of DNA replication. Cell 74: 979-992   DOI   ScienceOn
23 Goh, K. 1979. Chloramphenicol and chromosomal morphology. J. Med. 10: 159-166
24 Abou-Khalil, S., W. H. Abou-Khalil, and A. A. Yunis. 1980. Differential effects of chloramphenicol and its nitroso analogue on protein synthesis and oxidative phosphorylation in rat liver mitochondria. Biochem. Pharmacol. 29: 2605-2609   DOI   ScienceOn
25 Kapnusnik-Uner, J. E., M. A. Sande, and H. F. Chambers. 1996. Antimicrobial agents: Tetracycline, chloramphenicol, erythromycin, and miscellaneous antibacterial agents, pp. 1123-1154. In J. G. Hardman, L. E. Limbrid, P. B. Molinoff, R. W. Roddon, and A. G. Gilman (eds.). Goodman & Gilman's The Pharmacological Basis of Therapeutics. 9th ed. McGraw-Hill, New York, U.S.A
26 Yunis, A. A., G. K. Arimura, and M. Isildar. 1987. DNA damage induced by chloramphenicol and its nitroso derivative: Damage in intact cells. Am. J. Hematol. 24: 77-84   DOI   ScienceOn
27 Yunis, A. A. 1973. Chloramphenicol-induced bone marrow suppression. Semin. Hematol. 10: 225-234
28 Marks, M. I. and C. Laferriere. 1982. Chloramphenicol: Recent developments and clinical indications. Clin. Pharm. 1: 315-320
29 Jeong, Y. W., K. S. Kim, J. Y Oh, J. C. Park, J. H. Bang, S. W. Choi, and J. C. Lee. 2003. Growth inhibition and apoptosis induction of gastric cancer cells by copper (II) glycinate complex. J. Microbiol. Biotechnol. 13: 394-399
30 Holt, D. E., T. A. Ryder, A. Fairbairn, R. Hurley, and D. Harvey. 1997. The myelotoxicity of chloramphenicol: In vitro and in vivo studies: I. In vitro effects on cells in culture. Hum. Exp. Toxicol. 16: 570-576   DOI   ScienceOn