Browse > Article

cDNA Cloning of Farnesoic Acid-Induced Genes in Candida albicans by Differential Display Analysis  

CHUNG SOON-CHUN (School of Agricultural Biotechnology, Seoul National University)
LEE JI-YOON (School of Agricultural Biotechnology, Seoul National University)
OH KI-BONG (School of Agricultural Biotechnology, Seoul National University, Natural Products Research Institute, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.5, 2005 , pp. 1146-1151 More about this Journal
Abstract
The yeast Candida albicans has a distinguishing feature, dimorphism, which is the ability to switch between two morphological forms: a budding yeast form and a multicellular invasive filamentous form. This ability has been postulated to contribute to the virulence of this organism. Previously, we reported that the yeast-to-hypha transition in this organism is suppressed by farnesoic acid, a morphogenic autoregulatory substance that accumulates in the medium as the cells proliferate. In this study, using a differential display reverse transcription polymerase chain reaction (DDRT-PCR) technique, we have identified several genes induced in C. albicans by farnesoic acid treatment. These observations indicate that farnesoic acid can alter the expressivity of multiple genes, including the DNA replication machinery and cell-cycle-control proteins.
Keywords
Candida albicans; morphological transition; farnesoic acid; differential display analysis; Northern blot analysis; respondent genes;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Chindampom, A., Y. Nakagawa, I. Mizuguchi, H. Chibana, M. Doi, and K. Tanaka. 1998. Repetitive sequences (RPSs) in the chromosomes of Candida albicans are sandwiched between two novel stretches, HOK and RB2, common to each chromosome. Microbiology 144: 849-857   DOI   ScienceOn
2 Feller A., E. Dubois, F. Ramos, and A. Pierard. 1994. Repression of the genes for lysine biosynthesis in Saccharomyces cerevisiae is caused by limitation of Lys14-dependent transcriptional activation. Mol. Cell. Biol. 14: 6411-6418   DOI
3 Leberer, E., D. Harcus, I. D. Broadbent, K. L. Clark, D. Dignard, K. Ziegelbauer, A. Schmit, N. A. R. Gow, A. J. P. Brown, and D. Y. Thomas. 1996. Signal transduction through homo logs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc. Natl. Acad. Sci. USA 93: 13217-13222
4 Liu, H. 2001. Transcriptional control of dimorphism in Candida albicans. Curr. Opin. Microbiol. 4: 728-735   DOI   PUBMED   ScienceOn
5 Park, K.-S., H.-I. Kang, J. W. Lee, and Y.-K. Paik. 2004. Anti-candida activity of YH-1715R, a new triazole derivative. J. Microbiol. Biotechnol. 14: 693-697
6 Schneider, K. R., R. L. Smith, and E. K. O'Shea. 1994. Phosphate-regulated inactivation of the kinase PHO80-PHO85 by the CDK inhibitor PHO81. Science 266: 122-126   DOI   PUBMED
7 Dhillon, N. K., S. Sharma, and G. K. Khuller. 2003. Signaling through protein kinases and transcriptional regulators in Candida albicans. Crit. Rev. Microbiol. 29: 259-275   DOI   ScienceOn
8 Ogawa, N., K. Noguchi, H. Sawai, Y Yamashita, C. Yompakdee, and Y. Oshima. 1995. Functional domains of Pho81p, an inhibitor of Pho85p protein kinase, in the transduction pathway of Pi signals in Saccharomyces cerevisiae. Mol. Cell. Biol. 15: 997-1004   DOI
9 Lee, J.-H., Y.-D. Cho, J. J. Choi, Y.-J. Lee, H.-S. Hoe, H.-K. Kim, and S.-T. Kwon. 2003. High-level expression in Escherichia coli of alkaline phosphatase from Thermus caldophilus GK24 and purification of the recombinant enzyme. J. Microbiol. Biotechnol. 13: 660-665
10 Peggie, M. W., S. H. MacKelvie, A. Bloecher, E. V. Knatko, K. Tatchell, and M. J. Stark. 2002. Essential functions of Sds22p in chromosome stability and nuclear localization of PP1. J. Cell Sci. 115: 195-206
11 Zhao, X., P. J. Malloy, C. M. Ardies, and D. Feldman. 1995. Oestrogen-binding protein in Candida albicans: Antibody development and cellular localization by electron immunocytochemistry. Microbiology 141: 2685-2692   DOI   ScienceOn
12 Hurley, J. H., A. M. Dean, Jr. D. E. Koshland, and R. M. Stroud. 1991. Catalytic mechanism of NADP(+)-dependent isocitrate dehydrogenase: Implications from the structures of magnesium-isocitrate and NADP+ complexes. Biochemistry 30: 8671-8678   DOI   ScienceOn
13 Kim, S., E. Kim, D. S. Shin, H. Kang, and K. B. Oh. 2002. Evaluation of morphogenic regulatory activity of famesoic acid and its derivatives against Candida albicans dimorphism. Bioorg. Med. Chem. Lett. 12: 895-898   DOI   ScienceOn
14 Brown, A. J. P. and N. A. R. Gow. 1999. Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol. 7: 333-338   DOI   ScienceOn
15 Choi, J. H., W. Lou, and A. Vancura. 1998. A novel membrane-bound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 273: 29915-29922   DOI
16 EI Alami, M., A. Feller, A. Pierard, and E. Dubois. 2002. The proper folding of a long C-terminal segment of the yeast Lys14p regulator is required for activation of LYS genes in response to the metabolic effector. Mol. Microbiol. 43: 1629-1639   DOI   ScienceOn
17 Elzinga, S. D., A. L. Bednarz, K. Van Oosterum, P. J. Dekker, and L. A. Grivell. 1993. Yeast mitochondrial NAD(+)-dependent isocitrate dehydrogenase is an RNA-binding protein. Nucleic Acids Res. 21: 5328-5331   DOI   ScienceOn
18 Kokame, K., H. Kato, and T. Miyata.1996. Homocysteine-respondent genes in vascular endothelial cells identified by differential display analysis. J. Biol. Chem. 271: 29659-29665   DOI   ScienceOn
19 Odds, F. C. 1985. Morphogenesis in Candida albicans. Crit. Rev. Microbiol. 12: 45-93   DOI   PUBMED   ScienceOn
20 Sato, T., T. Watanabe, T. Mikami, and T. Matsumoto. 2004. Famesol, a morphogenetic autoregulatory substance in the dimorphic fungus Candida albicans, inhibits hyphae growth through suppression of a mitogen-activated protein kinase cascade. Biol. Pharm. Bull. 27: 751-752   DOI   ScienceOn
21 Sharkey, L. L., M. D. McNemar, S. M. Saporito-Irwin, P. S. Sypherd, and W. A. Fonzi. 1999. HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1. J. Bacteriol. 181: 5273-5279
22 Sedgwick, S. G. and S. J. Smerdon. 1999. The ankyrin repeat: A diversity of interactions on a common structural framework. Trends Biochem. Sci. 24: 311-316   DOI   PUBMED   ScienceOn
23 Bennett, V. 1992. Ankyrins. Adaptors between diverse plasma membrane proteins and the cytoplasm. J. Biol. Chem. 267: 8703-8706
24 Oh, K. B., H. Miyazawa, T. Naito, and H. Matsuoka. 2001. Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proc. Natl. Acad. Sci. USA 98: 4664-4668
25 Park, H. S., G. J. Jhon, and W. J. Choi. 1998. Deer antler extract selectively suppresses hyphal growth in dimorphic fungus, Candida albicans. J. Microbiol. Biotechnol. 8: 291-294
26 Knight, J. P., T. M. Daly, and L. W. Bergman. 2004. Regulation by phosphorylation of Pho81p, a cyclin-dependent kinase inhibitor in Saccharomyces cerevisiae. Curr. Genet. 46: 10-19
27 Braun, B. R. and A. D. Johnson. 1997. Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277: 105-109   DOI   PUBMED   ScienceOn
28 Leberer, E., D. Harcus, D. Dignard, L. Johnson, S. Ushinsky, D. Y. Thomas, and K. Schroppel. 2001. Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol. Microbiol. 42: 673-687   DOI   ScienceOn
29 Chen, H., M. Fujita, Q. Feng, J. Clardy, and G. R. Fink. 2004. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc. Natl. Acad. Sci. USA 101: 5048-5052
30 Shin, D. H., W. Y. Choi, Y. J. Yoo, M. K. Kim, and W. J. Choi. 2004. Lysophosphatidylcholine suppresses the expression of Phr1p and Pra1p, surface proteins involved in the morphogenesis of Candida albicans. J. Microbiol. Biotechnol. 14: 868-871
31 Hornby, J. M., E. C. Jensen, A. D. Lisee, J. J. Tasto, B. Jahnke, R. Shoemaker, P. Dussault, and K. W. Nickerson. 2001. Quorum sensing in the dimorphic fungus Candida albicans is mediated by famesol. Appl. Environ. Microbiol. 67: 2982-2992   DOI   ScienceOn
32 Rocha, C. R., K. Schroppel, D. Harcus, A. Marcil, Dignard, B. N. Taylor, D. Y Thomas, M. Whiteway, and E. Leberer. 2001. Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol. Biol. Cell 12: 3631-3643   DOI
33 Kinsman, O. S., K. Pitblado, and C. J. Coulson. 1988. Effect of mammalian steroid hormones and luteinizing hormone on the germination of Candida albicans and implications for vaginal candidosis. Mycoses 31: 617-626   DOI   ScienceOn
34 Bertuch, A. A. and V. Lundblad. 2003. The Ku heterodimer performs separable activities at double-strand breaks and chromosome termini. Mol. Cell Biol. 23: 8202-8215   DOI   ScienceOn