Browse > Article

Overexpression of sprA and sprB Genes is Tightly Regulated in Streptomyces griseus  

KIM , YOON-HEE (Department of Biological Science, Myongji University)
CHOI, SI-SUN (Department of Biological Science, Myongji University)
KANG, DAE-KYUNG (Bio-Resources Institute, Easy Bio System Inc.)
KANG, SANG-SOON (Division of Science Education, Chungbuk National University)
JEONG, BYEONG-CHUL (Department of Biological Science, Myongji University)
HONG, SOON-KWANG (Department of Biological Science, Myongji University)
Publication Information
Journal of Microbiology and Biotechnology / v.14, no.6, 2004 , pp. 1350-1355 More about this Journal
Abstract
The sprA and sprB genes, encoding the chymotrypsin-like proteases Streptomyces griseus protease A (SGPA) and Streptomyces griseus protease B (SGPB), and the sprT gene that encodes Streptomyces griseus trypsin (SGT) were cloned from S. griseus and were overexpressed in various strains of S. griseus. When the sprT gene was introduced into S. griseus, trypsin activity increased 2-fold in the A-factor deficient mutant strain, S. griseus HH1, and increased 4-fold in the wild strain, S. grise us IFO 13350. However, there was no detectable increase of chymotrypsin activity in the transformants of S. griseus with either sprA or sprB, in contrast to the results obtained from S. lividans as a heterologous host. To solve the negative gene dosage effects in S. griseus, either the sprA or the sprB genes with their own ribosome binding sites were linked to the downstream of the entire sprT gene, and the coexpression efficiency was examined in S. lividans and S. griseus. The transformants of S. lividans with either pWHM3-TA (sprT+sprA) or pWHM3­TB (sprT+sprB) showed 3-fold increase of trypsin activity over that of the control, however, only the transformant of pWHM3-TB demonstrated 7-fold increase in chymotrypsin activity, indicating that the pWHM3-TB has a successful construction for the overexpression of chymotrypsin in Streptomyces. When the coexpression vectors were introduced into S. griseus IFO 13350, the trypsin level sharply increased by more than 4-fold, however, the chymotrypsin level did not increase. These results strongly suggest that the overexpression of the sprA and sprB genes is tightly regulated in S. griseus.
Keywords
SGPA; SGPB; SGT; regulation; coexpression; S. griseus;
Citations & Related Records

Times Cited By Web Of Science : 10  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Hong, S. K. and S. Horinouchi. 1998. Effects of protein kinase inhibitors on in vitro protein phosphorylation and on secondary metabolism and morphogenesis in Streptomyces coelicolor A3(2). J. Microbiol. Biotechnol. 8: 325-332
2 Hong, S. K., M. Kito, T. Beppu, and S. Horinouchi. 1991. Phosphorylation of the AfsR product, a global regulatory protein for secondary metabolite formation in Streptomyces coelicolor A3(2). J. Bacteriol. 173: 2311-2318
3 Horinouchi, S. 2002. A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus. Front. Biosci. 7: 2045- 2057
4 Koo, B.-J., J.-M. Kim, S.-M. Byun, and S.-K. Hong. 1999. Optimal production conditions of Streptomyces griseus trypsin (SGT) in Streptomyces lividans. J. Biochem. Mol. Biol. 32: 86-91
5 Narahashi, Y., K. Shibuya, and M. Yanagita. 1968. Studies on proteolytic enzymes (pronase) of Streptomyces griseus K-1. II. Separation of exo- and endopeptidases of pronase. J. Biochem. (Tokyo) 64: 427-437
6 Park, U., J. W. Suh, and S. K. Hong. 2000. Genetics analysis of absR, a new abs locus of Streptomyces coelicolor. J. Microbiol. Biotechnol. 10: 169-175
7 Trop, M. and Y. Birk. 1970. The specificity of proteases from Streptomyces griseus (pronase). J. Biochem. 116: 19- 25
8 Nicieza, R. G., J. Huergo, B. A. Connolly, and J. Sanchez. 1999. Purification, characterization, and role of nucleases and serine proteases in Streptomyces differentiation. Analogies with the biochemical processes described in late steps of eukaryotic apoptosis. J. Biol. Chem. 274: 20366-20375
9 Henderson, G., P. Krygsman, C. J. Liu, C. C. Davey, and L. T. Malek. 1987. Characterization and structure of genes for proteases A and B from Streptomyces griseus. J. Bacteriol. 169: 3778-3784
10 Koo, B.-J., K.-H. Bai, S. M. Byun, and S.-K. Hong. 1998. Purification and characterization of Streptomyces griseus trypsin overexpressed in Streptomyces lividans. J. Microbiol. Biotechnol. 8: 333-340
11 Kwon, H. J., S. Y. Lee, S. K. Hong, U. M. Park, and J. W. Suh. 1999. Heterologous expression of Streptomyces albus genes linked to an integrating element and activation of antibiotic production. J. Microbiol. Biotechnol. 9: 235- 242
12 Hopwood, D. A., M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, D. J. Lydiate, C. P. Smith, and J. M. Ward. 1985. Genetic Manipulation of Streptomyces: A Laboratory Manual. The John Innes Foundation, Norwich, England
13 Kim, J. C., S. H. Cha, S. T. Jeong, S. K. Oh, and S. M. Byun. 1991. Molecular cloning and nucleotide sequence of Streptomyces griseus trypsin gene. Biochem. Biophys. Res. Commun. 181: 707-713
14 Olfason, R. W. and L. B. Smillie. 1975. Enzymatic and physicochemical properties of Streptomyces griseus trypsin. Biochemistry 14: 1161-1167
15 Okanishi, M., K. Suzuki, and H. Umezawa. 1974. Formation and reversion of streptomycete protoplasts: Cultural conditions and morphological study. J. Gen. Microbiol. 80: 389-400
16 Sohng, J.-K., H.-R. Noh, O.-H. Lee, S.-J. Kim. J.-M. Han, S.-K. Nam, and J.-C. Yoo. 2002. Function of lysine-148 in dTDP-D-glucose 4,6-dehydratase from Streptomyces antibioticus Tu99. J. Microbiol. Biotechnol. 12: 217-221
17 Kim, C.-Y., H.-J. Park, and E.-S. Kim. 2003. Heterologous expression of hybrid type II polyketide synthase system in Streptomyces species. J. Microbiol. Biotechnol. 13: 819- 822
18 Chi, W.-J., J.-M. Kim, S.-S. Choi, D.-K. Kang, and S.-K. Hong. 2001. Overexpression of SGPA and SGT induces morphological changes in Streptomyces lividans. J. Microbiol. Biotechnol. 11: 1077-1086
19 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248- 254   DOI   PUBMED   ScienceOn
20 Jo, Y.-Y., S.-H. Kim, Y.-Y. Yang, C.-M. Kang, J.-K. Sohng, and J.-W. Suh. 2003. Functional analysis of spectinomycin biosynthetic genes from Streptomyces spectabilis ATCC 27741. J. Microbiol. Biotechnol. 13: 906-911
21 Kim, J.-M. and S.-K. Hong. 2000. Streptomyces griseus HH1, an A-factor deficient mutant, produces diminished level of trypsin and increased level of metalloproteases. J. Microbiol. 38: 160-168
22 Kharel, M. K., B. Subba, H. C. Lee, K. Liou, J. S. Woo, D. H. Kim, Y.-H. Moon, and J. K. Sohng. 2003. Identification of 2-deoxy-scyllo-inosose synthase in aminoglycoside producer Streptomyces. J. Microbiol. Biotechnol. 13: 828-831
23 Choi, S.-S., W.-J. Chi, J. H. Lee, S.-S. Kang, D.-K. Kang, B. C. Jeong, and S.-K. Hong. 2001. Overexpression of the sprD gene encoding Streptomyces griseus protease D stimulates actinorhodin production in Streptomyces lividans. J. Microbiol. 39: 305-313
24 Sidhu, S. S., G. B. Kalmar, L. G. Willis, and T. J. Borgford. 1995. Protease evolution in Streptomyces griseus. J. Biol. Chem. 270: 7594-7600