Browse > Article

Process Strategies to Enhance the Production of 5-Aminolevulinic Acid with Recombinant E. coli  

LEE , DAE-HEE (Department of Food and Biotechnology, School of Life Sciences and Biotechnology, Korea University)
JUN, WOO-JIN (Department of Food and Nutrition, Chonnam National University)
YOON, JEONG-WEON (Department of Bioscience and Biotechnology, Suwon University)
CHO, HONG-YON (Department of Food and Biotechnology, School of Life Sciences and Biotechnology, Korea University)
HONG, BUM-SHIK (Department of Food and Biotechnology, School of Life Sciences and Biotechnology, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.14, no.6, 2004 , pp. 1310-1317 More about this Journal
Abstract
The extracellular production of 5-aminolevulinic acid (ALA) by recombinant E. coli BL21 harboring a fusion gene hemA was investigated in a fermenter. For this purpose, the effects of various physiological factors, such as isopropylthio­$\beta$-D-galactopyranoside (IPTG) concentrations and the time of induction, on enzyme activity were studied. Optimum concentrations of glycine and succinic acid were found to be 30 mM and 90 mM, respectively. When the cells were permitted to grow for 2 h prior to the addition of 0.1 mM IPTG, the activity of ALA synthase was higher than when IPTG was initially added. A 36-fold increase in the activity was observed with only 0.1 mM IPTG added. The pH of the medium also influenced the ALA synthase activity with the maximal activity occurring at pH 6.5. In recombinant E. coli extracts, the repeated addition of glycine and D-glucose increased the production of ALA and the inhibited intracellular ALA dehydratase activity, with up to 32 mM ALA being produced in the cultivation.
Keywords
5-Aminolevulinic acid; aminolevulinic acid synthase; aminolevulinic acid dehydratase; levulinic acid; D-glucose;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Baca-DeLancey, R. R., M. M. T. South, X. Doing, and P. N. Rather. 1999. Escherichia coli genes regulated by cell-to-cell signaling. Proc. Natl. Acad. Sci. USA 96: 4610-4614
2 Gong, J., G. A. Hunters, and G. C. Ferreira. 1998. Aspartate 279 in aminolevulinic acid synthase affects enzyme catalysis through enhancing the function of the pyridoxal 5-phosphate cofactor. Biochemistry 37: 3509-3517
3 Hotta, Y., T. Tanaka, H. Takaoka, Y. Takeuchi, and M. Konnai. 1997. New physiological effects of 5-aminolevulinic acid in plants: The increase of photosynthesis, chlorophyll content, and plant growth. Biosci. Biotechnol. Biochem. 61: 2025-2028
4 Ishino, A., A. Magara, M. Tajima, Y. Tuji, K. Takahashi, T. Tanaka, and Y. Hotta. 1999. External medicine for head hair. Jpn Kokai Tokkyo Koho: Toku Kai Hei 11-116446
5 Laemmli, U. K. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   PUBMED   ScienceOn
6 Lee, D. H., W. J. Jun, K. M. Kim, D. H. Shin, H. Y. Cho, and B. S. Hong. 2003. Inhibition of 5-aminolevulinic acid dehydratase in recombinant Escherichia coli using Dglucose. Enzym. Microb. Tech. 32: 27-34
7 Matsumoto, H., Y. Tanida, and K. Ishizuka. 1994. Pesticide Biochem. 48: 214-219
8 Mauzerall, S. and S. Granick, S. 1956. The occurrence and determination of $\delta$-aminolevulinic acid and porphobilinogen in urine. J. Biol. Chem. 219: 435-442
9 Neidle, E. L. and S. Kaplan. 1993. Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. J. Bacteriol. 175: 2292-2303
10 Peng, Q., H. F. Berg, J. Moan, M. Kongshaug, and J. M. Neslang. 1997. 5-Aminolevulinic acid-based photodynamic therapy: Principle and experimental research. Photochem. Photobiol. 65: 235-251
11 Rebeiz, C. A., A. Montazer-Zouhoor, J. M. Mayasich, B. C. Tripathy, S. M. Wu, and C. C. Rebeiz. 1988. Photodynamic herbicides. Recent developments and molecular basis of selectivity. Crit. Rev. Plant Sci. 6: 385-436
12 Lascelles, J. 1978. Regulation of pyrrole synthesis, pp. 795- 808. In R. K. Clayton and W. R. Sistrom (eds.), The Photosynthetic Bacteria. Plenum Press, New York. U.S.A
13 Hunters, G. and G. C. Ferreira. 1999. Pre-steady-state reaction of 5-aminolevulinic acid synthase. J. Biol. Chem. 274: 12222-12228
14 Lowry, O. H., N. J. Roenbrough, A. L. Farr, and R. J. Randal. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193: 265-275
15 McClung, C. R., J. E. Somerville, M. L. Guerinot, and B. K. Chelm. 1987. Structure of the Bradyrhizobium japonicum gene hemA encoding 5-aminolevulinic acid synthase. Gene 54: 133-139
16 Vladimir, Y. B., A. L. Demain, and N. I. Zaitseva. 1997. The crucial contribution of starved resting cells to the elucidation of the pathway of vitamin B12 biosynthesis. Crit. Rev. Biotechnol. 17: 21-37
17 Burnham, B. F. 1970.TEX>$\delta$-Aminolevulinic acid synthase (Rhodopseudomonas sphaeroides). Methods Enzymol. 17A: 195-200
18 Cho, Y. S., L. D. Park, Y. W. Kim, H. Hwangbo, W. J. Jung, J. S. Shu, B. S. Koo, H. B. Krishna, and K. Y. Kim. 2003. PQQ-Dependent organic acid production and effect on common bean growth by Rhizobium tropici CIAT 899. J. Microbiol. Biotechnol. 13(6): 955-959
19 Mariet J van der Werf and J. Gregory Zeikus. 1996. 5- Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Appl. Environ. Microbiol. 62: 3560-3566
20 Rebeiz, C. A., J. A. Juvik, and C. C. Rebeiz. 1988. Porphyric insecticides. 1. Concept and phenomenology. Pestic. Biochem. Physiol. 30: 11-27   DOI
21 Mitchell, L. W. and E. K. Jaffe. 1993. Porphobilinogen synthase from Escherichia coli is a Zn(II) metalloenzyme stimulated by Mg(II). Arch. Biochem. Biophys. 300: 169- 177
22 Nandi, D. L. and D. Shemin. 1968. Delta-aminolevulinic acid dehydratase of Rhodopseudomonas spheroides. 3. Mechanism of porphobilinogen synthesis. J. Biol. Chem. 243: 1236-1242
23 Sasaki, K., T. Tanaka, N. Nishio, and S. Nagai. 1993. Effect of culture pH on the extracellular production of $\delta$-aminolevulinic acid by Rhodobacter sphaeroides from volatile fatty acids. Biotech. Lett. 15: 859-864
24 Glick, B. R. 1995. Metabolic load and heterologous gene expression. Biotechnol. Adv. 13: 247-261   DOI   PUBMED   ScienceOn
25 Levy, J. G. 1995. Photodynamic therapy. Trends Biotechnol. 13: 14-18   DOI   PUBMED   ScienceOn
26 Malik, Z., J. Hanania, and Y. Nitzan. 1990. New trends in photobiology. Bactericidal effects of photoactivated porphyrinsan alternative approach to antimicrobial drugs. J. Photochem. Photobiol. B. Biol. 5: 281-293
27 Beale, S. I. 1978. $\delta$-Aminolevulinic acid in plants: Its biosynthesis, regulation, and role in plastid development. Ann. Rev. Physiol. 29: 95-120   DOI   ScienceOn
28 Jaffe, E. K. and S. Rajagopalan. 1990. Nuclear magnetic resonance studies of 5-aminolevulinate demonstrate multiple forms in aqueous solution. Bioorg. Chem. 18: 381-394
29 Oh, K. S., D. K. Na, M. H. Kweon, and H. J. Sung. 2003. Expression and purification of delta sleep-inducing peptide in Escherichia coli. J. Microbiol. Biotechnol. 13(4): 620- 623
30 Kriegmair, M., R. Baumgartner, R. Kneuchei, H. Stepp, F. Hofstadter, and A. Pofstertter. 1996. Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence. J. Urology 165: 105-110
31 Watanabe, K., T. Tanaka, Y. Hotta, H. Kuramochi, and Y. Takeuchi. 2000. Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. Plant Growth Regul. 32: 97- 101
32 Jordan, P. M. 1991. Biosynthesis of Tetrapyrroles. New Comprehensive Biochemistry. Elsevier, Amsterdam. 19: 1-24
33 Donovan, R. S., C. W. Robinson, and B. R. Glick. 2000. Optimizing the expression of a monoclonal antibody fragment under the transcriptional control of the Escherichia coli lac promoter. Can. J. Microbiol. 46: 532-541
34 Klotsky, R. A. and I. Schwartz. 1987. Measurement of cat expression from growth-rate-regulated promoters employing $\beta$-lactamase activity as an indicator of plasmid copy number. Gene 55: 141-146
35 Butler, A. R. and S. George. 1992. The nonenzymatic cyclic dimerisation of 5-aminolevulinic acid. Tetrahedron 48: 7879-7886
36 Takeya, H., T. Tanaka, T. Hotta, and K. Sasaki. 1997. Production methods and applications of 5-aminolevulinic acid. Porphyrins 6: 127-135
37 Kosinski, M. J., U. Rinas, and J. E. Bailey. 1992. Isopropylb- d-thiogalactopyranoside influences the metabolism of Escherichia coli. Appl. Microbiol. Biotechnol. 36: 782- 783
38 Sasikala, C., C. V. Ramana, and R. P. Raghuveer. 1994. 5- Aminolevulinic acid: A potential herbicide/insecticide from microorganisms. Biotechnol. Prog. 10: 451-459
39 Nandi, D. L. and D. Shemin. 1997. Quaternary structure of 5-aminolevulinic acid synthase from Rhodopseudomonas sphaeroides. J. Biol. Chem. 252: 2278-2280
40 Sasaki, K., T. Tananka, Y. Nishizawa, and M. Hayashi. 1991. Enhanced production of 5-aminolevulinic acid by repeated addition of levulinic acid and supplement of precursors in photoheterotrophic culture of Rhodobacter sphaeroides. J. Ferment. Bioeng. 71: 403-406
41 Choi, C., B. S. Hong, H. Y. Sung, H. S. Lee, and J. H. Kim. 1999. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum. Biotech. Lett. 21: 551-554