Browse > Article

Preparation of Hetero-Chitooligosaccharides and Their Antimicrobial Activity on Vibrio parahaemolyticus  

Park, Pyo-Jam (Department of Chemistry, Pukyong National University)
Lee, Hun-Ku (Microbiology, Pukyong National University)
Kim, Se-Kwon (Department of Chemistry, Pukyong National University)
Publication Information
Journal of Microbiology and Biotechnology / v.14, no.1, 2004 , pp. 41-47 More about this Journal
Abstract
This study was performed to investigate the antimicrobial effects of hetero-chitosans and their oligosaccharides on the halophilic bacterium, Vibrio parahaemolyticus. Nine classes of hetero-chitosan oligosaccharides were prepared based on their molecular weights, using an ultrafiltration membrane reactor system with chitosanase and celluase, from partially different deacetylated chitosans, 90%, 75%, and 50% deacetylated chitosan, respectively. Thirty-two strains of V. parahaemolyticus were isolated from various marine organisms such as shellfish, shrimps, octopus, and seabirds. Seventy-five percent deacetylated chitosan showed the highest antimicrobial acitivity. The minimal inhibitory concentration (MIC) was 0.5 mg/ml on 14 strains of V. parahaemolyticus, and MIC of the rest strains (18 strains) was 1.0 mg/ml. In addition, MIC of most hetero-chitosan oligosaccharides was 8.0 mg/ml. The results revealed that the antimicrobial effects of hetero-chitosans and their oligosaccharides against V. parahaemolyticus depend on the degree of deacetylation, their molecular weights, and strains tested.
Keywords
Hetero-chitosan; chitooligosaccharide; antimicrobial activity; Vibrio parahaemolyticus;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 24  (Related Records In Web of Science)
연도 인용수 순위
1 Park, P. J., J. Y. Je, and S. K. Kim. 2003. Free radical scavenging activities of differently deacetylated chitosan using an ESR spectrometer. J. Biochem. Mol. Biol. 36. (submitted)
2 Sekiguchi, S., Y. Miura, H. Kaneko, S. I. Nishimura, N. Nishi, M. Iwase, and S. Tokura. 1994. Molecular weight dependency of antimicrobial activity by chitosan oligomers, pp. 71-76. In K. Nishinari, and E. Doi (eds.), Food Hydrocolloids: Structures, Properties, and Functions, Plenum Press, New York, U.S.A
3 Zhang, H., Y. Du, X. Yu, M. Mitsutomi, and S. I. Aiba. 1999. Preparation of chitooligosacchairdes from chitosan by a complex enzyme. Carbohydr. Res. 320: 257-260
4 Chen, D. and P. J. Hanna. 1992. Attachment of Vibrio pathogens to cells of rainbow trout, Oncorhynchus mykis (Walbaum). J. Fish Dis. 15: 331-337
5 Suzuki, K., A. Tokoro, Y. Okawa, S. Suzuki, and M. Suzuki. 1985. Enhancing effects of N-acetyl chitooligosaccharides on the active oxygen-generating and microbicidal activities of peritoneal exudates cells in mice. Chem. Pharm. Bull. 33: 886-888
6 Joseph, S. W., R. R. Colwell, and J. B. Kaper. 1983. Vibrio parahaemolyticus and related halophilic vibrios. CRC Crit. Rev. Microbiol. 10: 7-123
7 Blix, G. 1948. The determination of glucosamine and galactosamine. Acta Chemica Scandinavica 2: 467-469
8 Jeuniaux, C., M. F. Voss-Foucart, M. Poulicek, and J. C. Bussers. 1989. Sources of chitin, estimated from new data on chitin biomass and production, pp. 3-11. In G. Skjak-Break, T. Anthonson, and P. Sandford (eds.), Chitin and Chitosan, Elsevier Applied Science, London/New York, U.S.A
9 Muzzarelli, R. A. A., X. Wenshui, M. Tomasetti, and P. Ilari. 1995. Depolymerization of chitosan and substituted chitosans with the aid of a wheat germ lipase preparation. Enzyme Microb. Technol. 17: 541-545
10 No, H. K., N. Y. Park, S. H. Lee, and S. P. Meyers. 2002. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 74: 65-72
11 Lee, H. K. and S. S. Lee. 1997. Identification of the vibrios isolation from the shrimp (Crangon affinis) in estuary of Nakdong river in Korea. J. Korean Soc. Microbiol. 32: 529- 537
12 Park, N. D., K. J. Jo, Y. Y. Jo, Y. L. Jin, K. Y. Kim, J. H. Shim, and Y. W. Kim. 2002. Variation of antifungal activities of chitosans on plant pathogens. J. Microbiol. Biotechnol. 12: 84-88
13 Jeon, Y. J. and S. K. Kim. 2000. Continuous production of chitooligosaccharides using a dual reactor system. Proc. Biochem. 35: 623-632
14 Lee, H. K., Y. H. Yoon, S. S Lee, and K. H. Ha. 1998. Biochemical characteristics of vibrios isolated from cultured shellfish, Ruditapes philippinarum, and some species of wild shellfish. J. Korean Soc. Microbiol. 33: 567-574
15 Cho, H. R., D. S. Chang, W. D. Lee, E. T. Jeong, and E. W. Lee. 1998. Utilization of chitosan hydrolysate as a natural food preservative for fish meat paste products. Korean J. Food Sci. Technol. 30: 817-822
16 Yun, Y. S., K. S. Kim, and Y. N. Lee. 1999. Antibacterial and antifungal effect of chitosan. J. Chitin Chitosan 4: 8-14
17 Jeon, Y. J. and S. K. Kim. 2000. Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohyd. Polym. 41: 133-141
18 Steers, E., E. L. Flotz, B. S. Gravics, and J. Riden. 1959. Inocular replicating apparatus for routine testing of bacterial susceptibility to antibiotics. Antibiot. Chemother. 9: 307- 311
19 Williams, E. M., D. Donaldson, and D. M. Matthews. 1965. The colorimetric ninhydrin reaction for estimation of alphaamino nitrogen and its application to cerebrospinal fluid. Clin. Chim. Acta 12: 468-470
20 Lee, H. K. 1996. The vibrios isolated from Octopus variabilis. J. Korean Soc. Microbiol. 31: 423-431
21 Montilla, R., J. Palomar, M. Santmarti, C. Fuste, and M. Vinas. 1994. Isolation and characterization of halophilic Vibrio from bivalves bred in nurseries at the Ebro Delta. J. Invertebr. Pathol. 63: 178-181
22 Ilyina, A. V., N. Y. Tatarinova, and V. P. Varlamov. 1999. The preparation of low-molecular-weight chitosan using chitinolytic complex from Streptomyces kurssanovii. Proc. Biochem. 34: 875-878
23 Muzzarelli, R. A. A., M. Tomasetti, and P. Ilari. 1994. Depolymerization of chitosan with the aid of papain. Enzyme Microb. Technol. 16: 110-114
24 Jeon, Y. J., P. J. Park, and S. K. Kim. 2001. Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohyd. Polym. 44: 71-76
25 Uchida, Y., M. Izume, and A. Ohtakara. 1989. Preparation of chitosan oligomers with purified chitosanase and its application, pp. 373-382. In G. Skjak-Break, T. Anthonson, and P. Sandford (eds.), Chitin and Chitosan, Elsevier Applied Science, London/New York, U.S.A
26 Yalpani, M. and D. Pantaleone. 1994. An examination of the unusual susceptibilities of aminoglycans to enzymatic hydrolysis. Carbohyd. Res. 256: 159-175
27 Yalpani, M., F. Johnson, and L. E. Robinson. 1992. Antimicrobial activity of some chitosan derivatives, pp. 543-548. In C. J. Brine, P. A. Sandford, and J. P. Zikakis (eds.), Advances in Chitin and Chitosan, Elsevier Applied Science, London, U.K
28 Kendra, D. F., D. Christian, and L. A. Hadwiger. 1989. Chitosan oligomers from Fusarium solani/pea interactions, chitinase/b-glucanase digestion of sporelings and from fungal wall chitin actively inhibit fungal growth and enhance disease resistance. Physiol. Mol. Plant Pathol. 35: 215-230
29 Jeon, Y. J. and S. K. Kim. 2002. Antitumor activity of chitosan oligosaccharides produced in ultrafiltration membrane reactor system. J. Microbiol. Biotechnol. 12: 503-507
30 Lee, H. K. 1999. Identification of the vibrios isolated from a shellfish, sunset shell, Soletellina olivacea. Korean J. Microbiol. 35: 185-191