Browse > Article

Design of Bacterial Vector Systems for the Production of Recombinant Proteins in Escherichia coli  

Mergulhao (Centro de Engenharia Biologica e Quimica, Instituto Superior Tecnico)
Filipe J.M. (Centro de Engenharia Biologica e Quimica, Instituto Superior Tecnico)
Gabriel A. Monteiro (Centro de Engenharia Biologica e Quimica, Instituto Superior Tecnico)
Joaquim M.S. Cabral (Centro de Engenharia Biologica e Quimica, Instituto Superior Tecnico)
M. Angela Taipa (Centro de Engenharia Biologica e Quimica, Instituto Superior Tecnico)
Publication Information
Journal of Microbiology and Biotechnology / v.14, no.1, 2004 , pp. 1-14 More about this Journal
Abstract
More than twenty years have passed since the approval of the first recombinant DNA product for therapeutic use (recombinant human insulin, 1982). However, the biotechnology industry is still facing a shortage of manufacturing capacity due to the increasing demand of therapeutic proteins. This demand has prompted the search for a growing number of biological production systems but, nevertheless, the Gram-negative bacterium Escherichia coli remains one of the most attractive production hosts. This review highlights the most important features and developments of plasmid vector design, emphasizing the different reported strategies for improving the expression and secretion of heterologous proteins using the cellular machinery of E. coli.
Keywords
Recombinant proteins; Escherichia coli; plasmid vectors;
Citations & Related Records

Times Cited By Web Of Science : 17  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Abrahmsen, L., T. Moks, B. Nilsson, and M. Uhlen. 1986. Secretion of heterologous gene products to the culture medium of Escherichia coli. Nucleic Acids Res. 14: 7487- 7500
2 Andersson, H. and G. von Heijne. 1991. A 30-residue-long “export initiation domain” adjacent to the signal sequence is critical for protein translocation across the inner membrane of Escherichia coli. Proc. Natl. Acad. Sci. USA 88: 9751- 9754
3 Balbas, P. 2001. Understanding the art of producing protein and nonprotein molecules in Escherichia coli. Mol. Biotechnol. 19: 251-267
4 Balbas, P. and F. Bolivar. 1990. Design and construction of expression plasmid vectors in Escherichia coli. Methods Enzymol. 185: 14-37
5 Balbas, P. and G. Gosset. 2001. Chromosomal editing in Escherichia coli. Vectors for DNA integration and excision. Mol. Biotechnol. 19: 1-12
6 Barth, S., M. Huhn, B. Matthey, A. Klimka, E. A. Galinski, and A. Engert. 2000. Compatible-solute-supported periplasmic expression of functional recombinant proteins under stress conditions. Appl. Environ. Microbiol. 66: 1572-1579
7 Bayer, M., R. Iberer, K. Bischof, E. Rassi, E. Stabentheiner, G. Zellnig, and G. Koraimann. 2001. Functional and mutational analysis of p19, a DNA transfer protein with muramidase activity. J. Bacteriol. 183: 3176-3183
8 Berg, O. G. and C. G. Kurland. 1997. Growth rate-optimised tRNA abundance and codon usage. J. Mol. Biol. 270: 544- 550
9 Cebolla, A., J. L. Royo, V. De Lorenzo, and E. Santero. 2002. Improvement of recombinant protein yield by a combination of transcriptional amplification and stabilization of gene expression. Appl. Environ. Microbiol. 68: 5034- 5041
10 Chatwin, H. M. and D. K. Summers. 2001. Monomer-dimer control of the ColE1 P(cer) promoter. Microbiol. 147: 3071- 3081
11 Cornelis, P., J. C. Sierra, A. Lim, Jr., A. Malur, S. Tungpradabkul, H. Tazka, A. Leitao, C. V. Martins, C. di Perna, L. Brys, P. De Baetseller, and R. Hamers. 1996. Development of new cloning vectors for the production of immunogenic outer membrane fusion proteins in Escherichia coli. Biotechnol. (N Y). 14: 203-208   DOI   ScienceOn
12 del Solar, G., R. Giraldo, M. J. Ruiz-Echevarria, M. Espinosa, and R. Diaz-Orejas. 1998. Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 62: 434-464
13 del Tito, B. J., Jr., J. M. Ward, J. Hodgson, C. J. Gershater, H. Edwards, L. A. Wysocki, F. A. Watson, G. Sathe, and J. F. Kane. 1995. Effects of a minor isoleucyl tRNA on heterologous protein translation in Escherichia coli. J. Bacteriol. 177: 7086-7091
14 Dong, H., L. Nilsson, and C. G. Kurland. 1995. Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J. Bacteriol. 177: 1497-1504
15 Gavit, P. and M. Better. 2000. Production of antifungal recombinant peptides in Escherichia coli. J. Biotechnol. 79: 127-136
16 Grossman, T. H., E. S. Kawasaki, S. R. Punreddy, and M. S. Osburne. 1998. Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene 209: 95-103
17 Guarente, L., G. Lauer, T. M. Roberts, and M. Ptashne. 1980. Improved methods for maximizing expression of a cloned gene: A bacterium that synthesizes rabbit betaglobin. Cell 20: 543-553
18 Hannig, G. and S. C. Makrides. 1998. Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol. 16: 54-60
19 Hew, Y., C. Lau, Z. Grzelczak, and F. W. Keeley. 2000. Identification of a GA-rich sequence as a proteinbinding site in the 3$^-untranslated region of chicken elastin mRNA with a potential role in the developmental regulation of elastin mRNA stability. J. Biol. Chem. 275: 24857- 24864
20 Holm, L. 1986. Codon usage and gene expression. Nucleic Acids Res. 14: 3075-3087
21 Ignatova, Z., A. Mahsunah, M. Georgieva, and V. Kasche. 2003. Improvement of posttranslational bottlenecks in the production of penicillin amidase in recombinant Escherichia coli strains. Appl. Environ. Microbiol. 69: 1237-1245
22 Ikemura, T. 1981. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J. Mol. Biol. 146: 1- 21
23 Ikemura, T. 1981. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: A proposal for a synonymous codon choice that is optimal for the E. coli translational system. J. Mol. Biol. 151: 389-409
24 Jeong, K. J. and S. Y. Lee. 2003. Enhanced production of recombinant proteins in Escherichia coli by filamentation suppression. Appl. Environ. Microbiol. 69: 1295-1298
25 Joly, J. C., W. S. Leung, and J. R. Swartz. 1998. Overexpression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-I accumulation. Proc. Natl. Acad. Sci. USA 95: 2773-2777
26 Kajava, A. V., S. N. Zolov, A. E. Kalinin, and M. A. Nesmeyanova. 2000. The net charge of the first 18 residues of the mature sequence affects protein translocation across the cytoplasmic membrane of gram-negative bacteria. J. Bacteriol. 182: 2163-2169
27 Kane, J. F. 1995. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6: 494-500   DOI   PUBMED   ScienceOn
28 Keefe, A. D., D. S. Wilson, B. Seelig, and J. W. Szostak. 2001. One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBPTag. Protein Expr. Purif. 23: 440-446
29 Kelley, B. D. 2001. Biochemical engineering: Bioprocessing of therapeutic proteins. Curr. Opin. Biotechnol. 12: 173- 174   DOI   PUBMED   ScienceOn
30 Kim, J., J. Luirink, and D. A. Kendall. 2000. SecB dependence of an exported protein is a continuum influenced by the characteristics of the signal peptide or early mature region. J. Bacteriol. 182: 4108-4112
31 Kurokawa, Y., H. Yanagi, and T. Yura. 2000. Overexpression of protein disulfide isomerase DsbC stabilizes multipledisulfide- bonded recombinant protein produced and transported to the periplasm in Escherichia coli. Appl. Environ. Microbiol. 66: 3960-3965
32 Lee, S., I. Kim, D. Kim, K. Bae, and S. Byun. 1998. High level secretion of recombinant staphylokinase into periplasm of Escherichia coli. Biotechnol. Lett. 20: 113-116
33 Monzavi-Karbassi, B., G. Cunto-Amesty, P. Luo, and T. Kieber-Emmons. 2002. Peptide mimotopes as surrogate antigens of carbohydrates in vaccine discovery. Trends Biotechnol. 20: 207-214
34 Mujacic, M., K. W. Cooper, and F. Baneyx. 1999. Coldinducible cloning vectors for low-temperature protein expression in Escherichia coli: Application to the production of a toxic and proteolytically sensitive fusion protein. Gene 238: 325-332
35 Murby, M., P. A. Nygren, H. Rondahl, U. Hellman, S. O. Enfors, and M. Uhlen. 1991. Differential degradation of a recombinant albumin-binding receptor in Escherichia coli. Eur. J. Biochem. 199: 41-46
36 Nielsen, P. E. 1999. Applications of peptide nucleic acids. Curr. Opin. Biotechnol. 10: 71-75   DOI   PUBMED   ScienceOn
37 Nilsson, B. and L. Abrahmsen. 1990. Fusions to staphylococcal protein A. Methods Enzymol. 185: 144-161
38 Nilsson, B., G. Forsberg, T. Moks, M. Hartmanis, and M. Uhlen. 1992. Fusion proteins in biotechnology. Curr. Opin. Biotechnol. 3: 363-369
39 Nilsson, J., S. Stahl, J. Lundeberg, M. Uhlen, and P. A. Nygren. 1997. Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr. Purif. 11: 1-16
40 Polyak, S. W., G. Forsberg, B. E. Forbes, K. A. McNeil, S. E. Aplin, and J. C. Wallace. 1997. Introduction of spacer peptides N-terminal to a cleavage recognition motif in recombinant fusion proteins can improve site-specific cleavage. Protein Eng. 10: 615-619
41 Pugsley, A. P., O. Francetic, O. M. Possot, N. Sauvonnet, and K. Hardie. 1997. Recent progress and future directions in studies of the main terminal branch of the general secretory pathway in Gram-neagtive bacteria - a review. Gene 192: 13-19   DOI   ScienceOn
42 Rinas, U. and J. Bailey. 1992. Protein compositional analysis of inclusion bodies produced in recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 37: 609-614
43 Robinson, M., R. Lilley, S. Little, J. S. Emtage, G. Yarranton, P. Stephens, A. Millican, M. Eaton, and G. Humphreys. 1984. Codon usage can affect efficiency of translation of genes in Escherichia coli. Nucleic Acids Res. 12: 6663-6671
44 Rosenberg, A. H., E. Goldman, J. J. Dunn, F. W. Studier, and G. Zubay. 1993. Effects of consecutive AGG codons on translation in Escherichia coli, demonstrated with a versatile codon test system. J. Bacteriol. 175: 716-722
45 Salmond, G. P. and P. J. Reeves. 1993. Membrane traffic wardens and protein secretion in gram-negative bacteria. Trends Biochem. Sci. 18: 7-12
46 Sharpe, M. E., H. M. Chatwin, C. Macpherson, H. L. Withers, and D. K. Summers. 1999. Analysis of the CoIE1 stability determinant Rcd. Microbiol. 145: 2135-2144
47 Shokri, A., A. M. Sanden, and G. Larsson. 2002. Growth rate-dependent changes in Escherichia coli membrane structure and protein leakage. Appl. Microbiol. Biotechnol. 58: 386-392
48 Siegele, D. A. and J. C. Hu. 1997. Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc. Natl. Acad. Sci. USA 94: 8168-8172
49 Swamy, K. H. and A. L. Goldberg. 1982. Subcellular distribution of various proteases in Escherichia coli. J. Bacteriol. 149: 1027-1033
50 Tang, J. and M. Hu. 1993. Production of human proinsulin in E. coli in a non-fusion form. Biotechnol. Lett. 15: 661- 666
51 Thomas, J. G. and F. Baneyx. 1996. Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overexpressing heat-shock proteins. J. Biol. Chem. 271: 11141-11147
52 Thomas, J. G. and F. Baneyx. 2000. ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells. Mol. Microbiol. 36: 1360-1370
53 Tomoyasu, T., A. Mogk, H. Langen, P. Goloubinoff, and B. Bukau. 2001. Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol. Microbiol. 40: 397-413
54 Gottesman, S. 1996. Proteases and their targets in Escherichia coli. Annu. Rev. Genet. 30: 465-506
55 Wang, H., D. J. O’Mahony, D. J. McConnell, and S. Z. Qi. 1993. Optimization of the synthesis of porcine somatotropin in Escherichia coli. Appl. Microbiol. Biotechnol. 39: 324- 328
56 Williams, D. P., D. Regier, D. Akiyoshi, F. Genbauffe, and J. R. Murphy. 1988. Design, synthesis and expression of a human interleukin-2 gene incorporating the codon usage bias found in highly expressed Escherichia coli genes. Nucleic Acids Res. 16: 10453-10467
57 Winter, J., P. Neubauer, R. Glockshuber, and R. Rudolph. 2001. Increased production of human proinsulin in the periplasmic space of Escherichia coli by fusion to DsbA. J. Biotechnol. 84: 175-185
58 Batisson, I. and M. der Vartanian. 2000. Extracellular DsbA-insensitive folding of Escherichia coli heat-stable enterotoxin STa in vitro. J. Biol. Chem. 275: 10582-10589
59 Fargo, D. C., J. E. Boynton, and N. W. Gillham. 1999. Mutations altering the predicted secondary structure of a chloroplast 5' untranslated region affect its physical and biochemical properties as well as its ability to promote translation of reporter mRNAs both in the Chlamydomonas reinhardtii chloroplast and in Escherichia coli. Mol. Cell. Biol. 19: 6980-6990
60 Missiakas, D. and S. Raina. 1997. Protein misfolding in the cell envelope of Escherichia coli: New signaling pathways. Trends Biochem. Sci. 22: 59-63
61 Gautam, A. and D. Bastia. 2001. A replication terminus located at or near a replication checkpoint of Bacillus subtilis functions independently of stringent control. J. Biol. Chem. 276: 8771-8777
62 Rowe, D. C. and D. K. Summers. 1999. The quiescent-cell expression system for protein synthesis in Escherichia coli. Appl. Environ. Microbiol. 65: 2710-2715
63 Summers, R. G., C. R. Harris, and J. R. Knowles. 1989. A conservative amino acid substitution, arginine for lysine, abolishes export of a hybrid protein in Escherichia coli. Implications for the mechanism of protein secretion. J. Biol. Chem. 264: 20082-20088
64 Baker, K. N., M. H. Rendall, A. Patel, P. Boyd, M. Hoare, R. B. Freedman, and D. C. James. 2002. Rapid monitoring of recombinant protein products: A comparison of current technologies. Trends Biotechnol. 20: 149-156
65 Fernandez, L. A., I. Sola, L. Enjuanes, and V. de Lorenzo. 2000. Specific secretion of active single-chain Fv antibodies into the supernatants of Escherichia coli cultures by use of the hemolysin system. Appl. Environ. Microbiol. 66: 5024- 5029
66 Pines, O. and M. Inouye. 1999. Expression and secretion of proteins in E. coli. Mol. Biotechnol. 12: 25-34
67 Samuelsson, E., P. Jonasson, F. Viklund, B. Nilsson, and M. Uhlen. 1996. Affinity-assisted in vivo folding of a secreted human peptide hormone in Escherichia coli. Nat. Biotechnol. 14: 751-755
68 Sandkvist, M. 2001. Biology of type II secretion. Mol. Microbiol. 40: 271-283
69 Bonekamp, F. and K. F. Jensen. 1988. The AGG codon is translated slowly in E. coli even at very low expression levels. Nucleic Acids Res. 16: 3013-3024
70 Canals, A., M. Ribo, A. Benito, M. Bosch, E. Mombelli, and M. Vilanova. 1999. Production of engineered human pancreatic ribonucleases, solving expression and purification problems, and enhancing thermostability. Protein Expr. Purif. 17: 169-181
71 Jeong, K. J. and S. Y. Lee. 2001. Secretory production of human granulocyte colony-stimulating factor in Escherichia coli. Protein Expr. Purif. 23: 311-318
72 Lee, S. Y. 1996. High cell-density culture of Escherichia coli. Trends Biotechnol. 14: 98-105   DOI   PUBMED   ScienceOn
73 Mergulhão, F., G. Monteiro, A. Kelly, M. Taipa, and J. Cabral. 2000. Recombinant human proinsulin: A new approach in gene assembly and protein expression. J. Microbiol. Biotechnol. 10: 690-693
74 Simmons, L. C. and D. G. Yansura. 1996. Translational level is a critical factor for the secretion of heterologous proteins in Escherichia coli. Nat. Biotechnol. 14: 629-634
75 Panayotatos, N. and K. Truong. 1985. Cleavage within an RNase III site can control mRNA stability and protein synthesis in vivo. Nucleic Acids Res. 13: 2227-2240
76 Summers, D. 1998. Timing, self-control and a sense of direction are the secrets of multicopy plasmid stability. Mol. Microbiol. 29: 1137-1145
77 Nakai, K. and M. Kanehisa. 1991. Expert system for predicting protein localization sites in gram-negative bacteria. Proteins 11: 95-110
78 Palacios, J. L., I. Zaror, P. Martinez, F. Uribe, P. Opazo, T. Socias, M. Gidekel, and A. Venegas. 2001. Subset of hybrid eukaryotic proteins is exported by the type I secretion system of Erwinia chrysanthemi. J. Bacteriol. 183: 1346- 1358
79 Qiu, J., J. R. Swartz, and G. Georgiou. 1998. Expression of active human tissue-type plasminogen activator in Escherichia coli. Appl. Environ. Microbiol. 64: 4891- 4896
80 Bonekamp, F., H. Dalboge, T. Christensen, and K. F. Jensen. 1989. Translation rates of individual codons are not correlated with tRNA abundances or with frequencies of utilization in Escherichia coli. J. Bacteriol. 171: 5812- 5816
81 Bostrom, M. and G. Larsson. 2002. Introduction of the carbohydrate-activated promoter P(malK) for recombinant protein production. Appl. Microbiol. Biotechnol. 59: 231- 238
82 Cooper, K. W. and F. Baneyx. 2001. Escherichia coli FtsH (HflB) degrades a membrane-associated TolAI-II-betalactamase fusion protein under highly denaturing conditions. Protein Expr. Purif. 21: 323-332
83 Sozhamannan, S. and B. L. Stitt. 1997. Effects on mRNA degradation by Escherichia coli transcription termination factor Rho and pBR322 copy number control protein Rop. J. Mol. Biol. 268: 689-703
84 Cranenburgh, R. M., J. A. Hanak, S. G. Williams, and D. J. Sherratt. 2001. Escherichia coli strains that allow antibioticfree plasmid selection and maintenance by repressor titration. Nucleic Acids Res. 29: E26
85 Lederberg, J. 1998. Plasmid (1952-1997). Plasmid 39: 1-9
86 Nygren, P. A., S. Stahl, and M. Uhlen. 1994. Engineering proteins to facilitate bioprocessing. Trends Biotechnol. 12: 184-188
87 Yoon, S. and W. Kang. 1994. Fed-batch operation of recombinant Escherichia coli containing the trp promoter with controlled specific growth rate. Biotechnol. Bioeng. 43
88 Bessette, P. H., F. Aslund, J. Beckwith, and G. Georgiou. 1999. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. Natl. Acad. Sci. USA 96: 13703-13708
89 Chang, J. R., J. J. Choi, H. K. Kim, and S. T. Kwon. 2001. Purification and properties of Aquifex aeolicus DNA polymerase expressed in Escherichia coli. FEMS Microbiol. Lett. 201: 73-77
90 Cubarsi, R., M. M. Carrio, and A. Villaverde. 2001. In situ proteolytic digestion of inclusion body polypeptides occurs as a cascade process. Biochem. Biophys. Res. Commun. 282: 436-441
91 Manosroi, J., C. Tayapiwatana, F. Gotz, R. G. Werner, and A. Manosroi. 2001. Secretion of active recombinant human tissue plasminogen activator derivatives in Escherichia coli. Appl. Environ. Microbiol. 67: 2657-2664
92 Swartz, J. R. 2001. Advances in Escherichia coli production of therapeutic proteins. Curr. Opin. Biotechnol. 12: 195-201   DOI   PUBMED   ScienceOn
93 Burgess, R. R. and N. E. Thompson. 2002. Advances in gentle immunoaffinity chromatography. Curr. Opin. Biotechnol. 13: 304-308
94 Chang, S. G., D. Y. Kim, K. D. Choi, J. M. Shin, and H. C. Shin. 1998. Human insulin production from a novel mini-proinsulin which has high receptor-binding activity. Biochem. J. 329: 631-635
95 Economou, A. 1999. Following the leader: Bacterial protein export through the Sec pathway. Trends Microbiol. 7: 315- 320
96 Jordi, B. J., T. A. Owen-Hughes, C. S. Hulton, and C. F. Higgins. 1995. DNA twist, flexibility and transcription of the osmoregulated proU promoter of Salmonella typhimurium. EMBO J. 14: 5690-5700
97 Andersen, D. C. and L. Krummen. 2002. Recombinant protein expression for therapeutic applications. Curr. Opin. Biotechnol. 13: 117-123
98 Han, S. J., H. N. Chang, and J. Lee. 2001. Characterization of an oxygen-dependent inducible promoter, the nar promoter of Escherichia coli, to utilize in metabolic engineering. Biotechnol. Bioeng. 72: 573-576
99 Stahl, S. and P. A. Nygren. 1997. The use of gene fusions to protein A and protein G in immunology and biotechnology. Pathol. Biol. (Paris) 45: 66-76
100 Sauvonnet, N., I. Poquet, and A. P. Pugsley. 1995. Extracellular secretion of pullulanase is unaffected by minor sequence changes but is usually prevented by adding reporter proteins to its N- or C-terminal end. J. Bacteriol. 177: 5238-5246
101 Tsuji, A., H. Koshimoto, Y. Sato, M. Hirano, Y. Sei-Iida, S. Kondo, and K. Ishibashi. 2000. Direct observation of specific messenger RNA in a single living cell under a fluorescence microscope. Biophys. J. 78: 3260-3274
102 Honey, S., B. L. Schneider, D. M. Schieltz, J. R. Yates, and B. Futcher. 2001. A novel multiple affinity purification tag and its use in identification of proteins associated with a cyclin-CDK complex. Nucleic Acids Res. 29: E24
103 Dong, H., L. Nilsson, and C. G. Kurland. 1996. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J. Mol. Biol. 260: 649-663   DOI   ScienceOn
104 Hamilton, S. R., J. B. O’Donnell, Jr., A. Hammet, D. Stapleton, S. A. Habinowski, A. R. Means, B. E. Kemp, and L. A. Witters. 2002. AMP-activated protein kinase kinase: Detection with recombinant AMPK alpha1 subunit. Biochem. Biophys. Res. Commun. 293: 892-898
105 Jeong, K. J. and S. Y. Lee. 2002. Excretion of human betaendorphin into culture medium by using outer membrane protein F as a fusion partner in recombinant Escherichia coli. Appl. Environ. Microbiol. 68: 4979-4985
106 Tunner, J. R. and C. R. Robertson. 1992. Use of glucose starvation to limit growth and induce protein production in Escherichia coli. Biotechnol. Bioeng. 40: 271-279
107 Jonasson, P., J. Nilsson, E. Samuelsson, T. Moks, S. Stahl, and M. Uhlen. 1996. Single-step trypsin cleavage of a fusion protein to obtain human insulin and its C peptide. Eur. J. Biochem. 236: 656-661
108 Koster, M., W. Bitter, and J. Tommassen. 2000. Protein secretion mechanisms in Gram-negative bacteria. Int. J. Med. Microbiol. 290: 325-331
109 McKern, N. M., M. Lou, M. J. Frenkel, A. Verkuylen, J. D. Bentley, G. O. Lovrecz, N. Ivancic, T. C. Elleman, T. P. Garrett, L. J. Cosgrove, and C. W. Ward. 1997. Crystallization of the first three domains of the human insulin-like growth factor-1 receptor. Protein Sci. 6: 2663- 2666
110 Hernan, R. A., H. L. Hui, M. E. Andracki, R. W. Noble, S. G. Sligar, J. A. Walder, and R. Y. Walder. 1992. Human hemoglobin expression in Escherichia coli: Importance of optimal codon usage. Biochem. 31: 8619-8628
111 Middelberg, A. 2002. Preparative protein refolding. Trends Biotechnol. 20: 437
112 Thomas, J. G. and F. Baneyx. 1997. Divergent effects of chaperone overexpression and ethanol supplementation on inclusion body formation in recombinant Escherichia coli. Protein Expr. Purif. 11: 289-296
113 Nishihara, K., M. Kanemori, M. Kitagawa, H. Yanagi, and T. Yura. 1998. Chaperone coexpression plasmids: Differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl. Environ. Microbiol. 64: 1694-1699
114 Rosenberg, H. F. 1998. Isolation of recombinant secretory proteins by limited induction and quantitative harvest. Biotechniques 24: 188-191   PUBMED
115 Smolke, C. D. and J. D. Keasling. 2002. Effect of copy number and mRNA processing and stabilization on transcript and protein levels from an engineered dual-gene operon. Biotechnol. Bioeng. 78: 412-424
116 Binet, R., S. Letoffe, J. M. Ghigo, P. Delepelaire, and C. Wandersman. 1997. Protein secretion by Gram-negative bacterial ABC exporters - a review. Gene 192: 7-11
117 Brendel, V., P. Bucher, I. R. Nourbakhsh, B. E. Blaisdell, and S. Karlin. 1992. Methods and algorithms for statistical analysis of protein sequences. Proc. Natl. Acad. Sci. USA 89: 2002-2006
118 Huang, H. C., M. Y. Sherman, O. Kandror, and A. L. Goldberg. 2001. The molecular chaperone DnaJ is required for the degradation of a soluble abnormal protein in Escherichia coli. J. Biol. Chem. 276: 3920-3928
119 Puri, N., K. B. Appa Rao, S. Menon, A. K. Panda, G. Tiwari, L. C. Garg, and S. M. Totey. 1999. Effect of the codon following the ATG start site on the expression of ovine growth hormone in Escherichia coli. Protein Expr. Purif. 17: 215-223
120 Taguchi, S., K. I. Nishihama, K. Igi, K. Ito, H. Taira, M. Motoki, and H. Momose. 2000. Substrate specificity analysis of microbial transglutaminase using proteinaceous protease inhibitors as natural model substrates. J. Biochem. (Tokyo) 128: 415-425
121 Summers, R. G. and J. R. Knowles. 1989. Illicit secretion of a cytoplasmic protein into the periplasm of Escherichia coli requires a signal peptide plus a portion of the cognate secreted protein. Demarcation of the critical region of the mature protein. J. Biol. Chem. 264: 20074-20081
122 Cornelis, P. 2000. Expressing genes in different Escherichia coli compartments. Curr. Opin. Biotechnol. 11: 450-454
123 Hammarberg, B., P. A. Nygren, E. Holmgren, A. Elmblad, M. Tally, U. Hellman, T. Moks, and M. Uhlen. 1989. Dual affinity fusion approach and its use to express recombinant human insulin-like growth factor II. Proc. Natl. Acad. Sci. USA 86: 4367-4371
124 Loo, T., M. L. Patchett, G. E. Norris, and J. S. Lott. 2002. Using secretion to solve a solubility problem: High-yield expression in Escherichia coli and purification of the bacterial glycoamidase PNGase F. Protein Expr. Purif. 24: 90-98
125 Baneyx, F. and G. Georgiou. 1991. Construction and characterization of Escherichia coli strains deficient in multiple secreted proteases: Protease III degrades highmolecular- weight substrates in vivo. J. Bacteriol. 173: 2696-2703
126 Kim, B. G. 1990. Analysis of pBR322 replication kinetics and its dependency on growth rate. Biotechnol. Bioeng. 36: 233-242   DOI   PUBMED
127 Mergulhão, F., G. Monteiro, G. Larsson, A. Sandem, A. Farewell, T. Nystrom, J. Cabral, and M. Taipa. 2003. Medium and copy number effects on the secretion of human proinsulin in Escherichia coli using the universal stress promoters uspA and uspB. Appl. Microbiol. Biotechnol. 61: 495-501
128 Moks, T., L. Abrahmsen, E. Holmgren, M. Bilich, A. Olsson, M. Uhlen, G. Pohl, C. Sterky, H. Hultberg, S. Josephson, et al. 1987. Expression of human insulin-like growth factor I in bacteria: use of optimized gene fusion vectors to facilitate protein purification. Biochem. 26: 5239-5244
129 Rosenbaum, V., T. Klahn, U. Lundberg, E. Holmgren, A. von Gabain, and D. Riesner. 1993. Co-existing structures of an mRNA stability determinant. The 5' region of the Escherichia coli and Serratia marcescens ompA mRNA. J. Mol. Biol. 229: 656-670
130 Ross, W., S. E. Aiyar, J. Salomon, and R. L. Gourse. 1998. Escherichia coli promoters with UP elements of different strengths: Modular structure of bacterial promoters. J. Bacteriol. 180: 5375-5383
131 Workman, C. and A. Krogh. 1999. No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution. Nucleic Acids Res. 27: 4816-4822
132 Netzer, W. J. and F. U. Hartl. 1998. Protein folding in the cytosol: Chaperonin-dependent and -independent mechanisms. Trends Biochem. Sci. 23: 68-73
133 Nielsen, H., J. Engelbrecht, S. Brunak, and G. von Heijne. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10: 1-6
134 Prinz, W. A., F. Aslund, A. Holmgren, and J. Beckwith. 1997. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J. Biol. Chem. 272: 15661-15667
135 Baneyx, F. 1999. Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 10: 411-421
136 Chen, G. F. and M. Inouye. 1990. Suppression of the negative effect of minor arginine codons on gene expression; preferential usage of minor codons within the first 25 codons of the Escherichia coli genes. Nucleic Acids Res. 18: 1465- 1473
137 Grosjean, H. and W. Fiers. 1982. Preferential codon usage in prokaryotic genes: The optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18: 199-209
138 Mergulhão, F. J. M., G. A. Monteiro, G. Larsson, M. Bostrom, A. Farewell, T. Nystrom, J. M. S. Cabral, and M. A. Taipa. 2003. Evaluation of inducible promoters on the secretion of a ZZ-Proinsulin fusion protein. Biotechnol. Appl. Biochem. 38: 87-93
139 Schmidt, M., E. Viaplana, F. Hoffmann, S. Marten, A. Villaverde, and U. Rinas. 1999. Secretion-dependent proteolysis of heterologous protein by recombinant Escherichia coli is connected to an increased activity of the energy-generating dissimilatory pathway. Biotechnol. Bioeng. 66: 61-67
140 Spanjaard, R. A. and J. van Duin. 1988. Translation of the sequence AGG-AGG yields 50% ribosomal frameshift. Proc. Natl. Acad. Sci. USA 85: 7967-7971   DOI   ScienceOn
141 Kweon, D. H., D. H. Lee, N. S. Han, C. S. Rha, and J. H. Seo. 2002. Characterization of polycationic amino acids fusion systems for ion-exchange purification of cyclodextrin glycosyltransferase from recombinant Escherichia coli. Biotechnol. Prog. 18: 303-308
142 Carrier, T., K. L. Jones, and J. D. Keasling. 1998. mRNA stability and plasmid copy number effects on gene expression from an inducible promoter system. Biotechnol. Bioeng. 59: 666-672
143 Dias, A. 1990. Overproduction of proteins in Escherichia coli: Vectors, hosts and strategies. Methods Enzymol. 182: 93-112   DOI   PUBMED
144 Estrem, S. T., T. Gaal, W. Ross, and R. L. Gourse. 1998. Identification of an UP element consensus sequence for bacterial promoters. Proc. Natl. Acad. Sci. USA 95: 9761-9766
145 Lee, S. B. and J. E. Bailey. 2000. Analysis of growth rate effects on productivity of recombinant Escherichia coli populations using molecular mechanism models. Biotechnol. Bioeng. 26: 66-73
146 Serra, E. C., N. Carrillo, A. R. Krapp, and E. A. Ceccarelli. 1993. One-step purification of plant ferredoxin-NADP+ oxidoreductase expressed in Escherichia coli as fusion with glutathione S-transferase. Protein Expr. Purif. 4: 539-546
147 Terpe, K. 2003. Overview of tag protein fusions: From molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 60: 523-533
148 Belagaje, R. M., S. G. Reams, S. C. Ly, and W. F. Prouty. 1997. Increased production of low molecular weight recombinant proteins in Escherichia coli. Protein Sci. 6: 1953-1962
149 Chenal, A., P. Nizard, V. Forge, M. Pugniere, M. O. Roy, J. C. Mani, F. Guillain, and D. Gillet. 2002. Does fusion of domains from unrelated proteins affect their folding pathways and the structural changes involved in their function? A case study with the diphtheria toxin T domain. Protein Eng. 15: 383-391
150 Goldman, E., A. H. Rosenberg, G. Zubay, and F. W. Studier. 1995. Consecutive low-usage leucine codons block translation only when near the 5$^ end of a message in Escherichia coli. J. Mol. Biol. 245: 467-473
151 Levine, A. D., S. H. Rangwala, N. A. Horn, M. A. Peel, B. K. Matthews, R. M. Leimgruber, J. A. Manning, B. F. Bishop, and P. O. Olins. 1995. High level expression and refolding of mouse interleukin 4 synthesized in Escherichia coli. J. Biol. Chem. 270: 7445-7452
152 Mackin, R. B. 1999. Streamlined procedure for the production of normal and altered versions of recombinant human proinsulin. Protein Expr. Purif. 15: 308-313   DOI   PUBMED   ScienceOn
153 Hellebust, H., M. Murby, L. Abrahmsen, M. Uhlen, and S. Enfors. 1989. Different approaches to stabilize a recombinant fusion protein. Bio/Technology 7: 165-168
154 Kang, Y. and J. W. Yoon. 1994. Effect of modification of connecting peptide of proinsulin on its export. J. Biotechnol. 36: 45-54
155 Lee, J., M. Cho, E. Hong, K. Kim, and J. Lee. 1996. Characterization of the nar promoter to use as an inducible promoter. Biotechnol. Lett. 18: 129-134
156 Nakamura, Y. and K. Ito. 2002. A tripeptide discriminator for stop codon recognition. FEBS Lett. 514: 30-33
157 Seffens, W. and D. Digby. 1999. mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. Nucleic Acids Res. 27: 1578-1584
158 Prytz, I., A. M. Sandén, T. Nystrom, A. Farewell, A. Wahlstrom, C. Forberg, I. Tubulekas, Z. Pragai, M. Barer, C. Harwood, and G. Larsson. 2002. Fed-batch production of recombinant beta-galactosidase using the universal stress promoters uspA and uspB in high cell density cultivation. Biotechnol. Bioeng. 83: 595-603
159 Sawers, G. and M. Jarsch. 1996. Alternative regulation principles for the production of recombinant proteins in Escherichia coli. Appl. Microbiol. Biotechnol. 46: 1-9
160 Uhlen, M., T. Moks, and L. Abrahmsen. 1988. Protein engineering to optimize recombinant protein purification. Biochem. Soc. Trans. 16: 111-112
161 Makrides, S. C. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60: 512-538   PUBMED
162 Makoff, A. J., M. D. Oxer, M. A. Romanos, N. F. Fairweather, and S. Ballantine. 1989. Expression of tetanus toxin fragment C in E. coli: high level expression by removing rare codons. Nucleic Acids Res. 17: 10191- 10202
163 Fernandez, L. A. and V. de Lorenzo. 2001. Formation of disulphide bonds during secretion of proteins through the periplasmic-independent type I pathway. Mol. Microbiol. 40: 332-346   DOI   ScienceOn
164 Kim, Y. S., H. C. Jung, and J. G. Pan. 2000. Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants. Appl. Environ. Microbiol. 66: 788-793
165 Kitagawa, J., K. Yamamoto, and H. Iba. 2001. Computational analysis of sos response in ultraviolet-irradiated Escherichia coli. Genome Inf. 12: 280-281
166 Mikhaleva, N. I., V. V. Golovastov, S. N. Zolov, M. V. Bogdanov, W. Dowhan, and M. A. Nesmeyanova. 2001. Depletion of phosphatidylethanolamine affects secretion of Escherichia coli alkaline phosphatase and its transcriptional expression. FEBS Lett. 493: 85-90
167 Vasina, J. A. and F. Baneyx. 1997. Expression of aggregation-prone recombinant proteins at low temperatures: A comparative study of the Escherichia coli cspA and tac promoter systems. Protein Expr. Purif. 9: 211-218
168 Stader, J. A. and T. J. Silhavy. 1990. Engineering Escherichia coli to secrete heterologous gene products. Methods Enzymol. 185: 166-187
169 Stahl, S., J. Nilsson, S. Hober, M. Uhlen, and P. Nygren. 1999. Affinity fusions, gene expression, pp. 49-63. In M. Flickinger and Drew S. (eds.), Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation. John Wiley & Sons, New York, U.S.A
170 Szweda, P., R. Pladzyk, R. Kotlowski, and J. Kur. 2001. Cloning, expression, and purification of the Staphylococcus simulans lysostaphin using the intein-chitin-binding domain (CBD) system. Protein Expr. Purif. 22: 467-471
171 Zahn, K. 1996. Overexpression of an mRNA dependent on rare codons inhibits protein synthesis and cell growth. J. Bacteriol. 178: 2926-2933
172 Herman-Antosiewicz, A., M. Obuchowski, and G. Wegrzyn. 2001. A plasmid cloning vector with precisely regulatable copy number in Escherichia coli. Mol. Biotechnol. 17: 193- 199
173 Choe, W. S., R. H. Clemmitt, H. A. Chase, and A. P. Middelberg. 2002. Comparison of histidine-tag capture chemistries for purification following chemical extraction. J. Chromatogr. A. 953: 111-121
174 Gottesman, M. E. and W. A. Hendrickson. 2000. Protein folding and unfolding by Escherichia coli chaperones and chaperonins. Curr. Opin. Microbiol. 3: 197-202
175 Guisez, Y., I. Fache, L. A. Campfield, F. J. Smith, A. Farid, G. Plaetinck, J. Van der Heyden, J. Tavernier, W. Fiers, P. Burn, and R. Devos. 1998. Efficient secretion of biologically active recombinant OB protein (leptin) in Escherichia coli, purification from the periplasm and characterization. Protein Expr. Purif. 12: 249-258
176 Stahl, S. and M. Uhlen. 1997. Bacterial surface display: Trends and progress. Trends Biotechnol. 15: 185-192
177 Talmadge, K. and W. Gilbert. 1982. Cellular location affects protein stability in Escherichia coli. Proc. Natl. Acad. Sci. USA 79: 1830-1833
178 Su, X., A. K. Prestwood, and R. A. McGraw. 1992. Production of recombinant porcine tumor necrosis factor alpha in a novel E. coli expression system. Biotechniques 13: 756-762
179 Bothmann, H. and A. Pluckthun. 2000. The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA. I. Increased functional expression of antibody fragments with and without cis-prolines. J. Biol. Chem. 275: 17100-17105
180 Clark, E. D. 2001. Protein refolding for industrial processes. Curr. Opin. Biotechnol. 12: 202-207   DOI   PUBMED   ScienceOn
181 Meerman, H. J. and G. Georgiou. 1994. Construction and characterization of a set of E. coli strains deficient in all known loci affecting the proteolytic stability of secreted recombinant proteins. Biotechnol. (N Y). 12: 1107-1110
182 Mellies, J., R. Brems, and M. Villarejo. 1994. The Escherichia coli proU promoter element and its contribution to osmotically signaled transcription activation. J. Bacteriol. 176: 3638-3645
183 Mergulhão, F. J., G. A. Monteiro, J. M. Cabral, and M. A. Taipa. 2001. A quantitative ELISA for monitoring the secretion of ZZ-fusion proteins using SpA domain as immunodetection reporter system. Mol. Biotechnol. 19: 239-244
184 Zavialov, A. V., N. V. Batchikova, T. Korpela, L. E. Petrovskaya, V. G. Korobko, J. Kersley, S. MacIntyre, and V. P. Zav’yalov. 2001. Secretion of recombinant proteins via the chaperone/usher pathway in Escherichia coli. Appl. Environ. Microbiol. 67: 1805-1814
185 Pugsley, A. P. 1993. The complete general secretory pathway in gram-negative bacteria. Microbiol. Rev. 57: 50- 108   PUBMED
186 Schenborn, E. and D. Groskreutz. 1999. Reporter gene vectors and assays. Mol. Biotechnol. 13: 29-44
187 Shokri, A., A. M. Sandén, and G. Larsson. 2003. Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. Appl. Microbiol. Biotechnol. 60: 654-664
188 Tomme, P., A. Boraston, B. McLean, J. Kormos, A. L. Creagh, K. Sturch, N. R. Gilkes, C. A. Haynes, R. A. Warren, and D. G. Kilburn. 1998. Characterization and affinity applications of cellulose-binding domains. J. Chromatogr. B. Biomed. Sci. Appl. 715: 283-296
189 Schaffner, J., J. Winter, R. Rudolph, and E. Schwarz. 2001. Cosecretion of chaperones and low-molecular-size medium additives increases the yield of recombinant disulfidebridged proteins. Appl. Environ. Microbiol. 67: 3994- 4000
190 Stacey, S. N., D. Jordan, A. J. Williamson, M. Brown, J. H. Coote, and J. R. Arrand. 2000. Leaky scanning is the predominant mechanism for translation of human papillomavirus type 16 E7 oncoprotein from E6/E7 bicistronic mRNA. J. Virol. 74: 7284-7297
191 Vasina, J. A., M. S. Peterson, and F. Baneyx. 1998. Scaleup and optimization of the low-temperature inducible cspA promoter system. Biotechnol. Prog. 14: 714-721
192 Zhang, Y., D. R. Olsen, K. B. Nguyen, P. S. Olson, E. T. Rhodes, and D. Mascarenhas. 1998. Expression of eukaryotic proteins in soluble form in Escherichia coli. Protein Expr. Purif. 12: 159-165
193 Misoka, F., T. Miyake, K. Miyoshi, M. Sugiyama, S. Sakamoto, and T. Fuwa. 1989. Overproduction of human insulin-like growth factor-II in Escherichia coli. Biotechnol. Lett. 11: 839-844
194 Hasenwinkle, D., E. Jervis, O. Kops, C. Liu, G. Lesnicki, C. Haynes, and D. Kilburn. 1997. Very high-level production and export in Escherichia coli of a cellulose binding domain for use in a generic secretion-affinity fusion system. Biotechnol. Bioeng. 55: 854-863
195 Lai, W. B. and A. P. Middelberg. 2002. The production of human papillomavirus type 16 L1 vaccine product from Escherichia coli inclusion bodies. Bioprocess Biosyst. Eng. 25: 121-128
196 Choi, J., K. Ra, and Y. Lee. 1999. Enhancement of bovine growth hormone gene expression by increasing the plasmid copy number. Biotechnol. Lett. 21: 1-5
197 Guisez, Y., J. Robbens, E. Remaut, and W. Fiers. 1993. Folding of the MS2 coat protein in Escherichia coli is modulated by translational pauses resulting from mRNA secondary structure and codon usage: a hypothesis. J. Theor. Biol. 162: 243-252
198 Lellouch, A. C. and R. A. Geremia. 1999. Expression and study of recombinant ExoM, a beta1-4 glucosyltransferase involved in succinoglycan biosynthesis in Sinorhizobium meliloti. J. Bacteriol. 181: 1141-1148
199 Yokoyama, S. 2003. Protein expression systems for structural genomics and proteomics. Curr. Opin. Chem. Biol. 7: 39-43
200 Murby, M., E. Samuelsson, T. N. Nguyen, L. Mignard, U. Power, H. Binz, M. Uhlen, and S. Stahl. 1995. Hydrophobicity engineering to increase solubility and stability of a recombinant protein from respiratory syncytial virus. Eur. J. Biochem. 230: 38-44