Browse > Article

Kinetics of $Fe^{2+}$ Oxidation by Acidithiobacillus ferrooxidans Using Total Organic Carbon Measurement  

Lom, In-Soo (Department of Environmental Science and Engineering, Kwangju Institute of Science and Technology)
Jang, Hyun-Young (Department of Environmental Science and Engineering, Kwangju Institute of Science and Technology)
Lee, Jong-Un (Department of Environmental Science and Engineering, Kwangju Institute of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.12, no.2, 2002 , pp. 268-272 More about this Journal
Abstract
Kinetic experiments on the biological oxidation of $Fe^{2+}$ by Acidithiobacillus ferrooxidans were conducted by measuring the total organic carbon content. The total organic carbon in the solution was determined with different initial concentrations of $Fe^{2+}$(4, 9, 15, and 20 mg/ml). The growth of At. ferrooxidans and substrate utilization were described by the Monod expression. The total organic carbon was found to be an indicator of the biomass concentration and thus may be effectively utilized for estimating cell growth rates in kinetic model development.
Keywords
Ferrous ion; kinetic model; Acidithiobacillus ferrooxidans; total organic carbon;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 McDonald, D. G. and R. H. Clack. 1970. The oxidation of aqueous ferrous sulphate by Thiobacillus ferrooxidans. Can. J. Chem. Eng. 48: 669-676
2 Monod, J. 1949. The growth of bacterial cultures. Annu. Rev. Microbiol. 3: 371-394
3 Barrett, J., M. N. Hughes, G. I. Karavaiko, and P. A. Spencer. 1993. Metal Extraction by Bacterial Oxidation of Minerals. Ellis Horwood, Chichester
4 Dastidar, M. G., A. Malik, and P. K. Roychoudhury. 2000. Biodesulphurization of Indian (Assam) coal using Thiobacillus ferrooxidans (ATCC 13984). Energy Conversion and Management 41: 375-388
5 Silverman, M. P. and D. G. Lundgren. 1959. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yields. J. Bacteriol. 77: 642-647
6 Dew, D. W., E. N. Lawson, and J. L. Broadhurst. 1998. The BIOX$^(R)$ process for biooxidation of gold-bearing ore or concentrates, pp. 45-80. In D. E. Rawlings (ed.), Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag, Berlin, Germany
7 Kelly, D. P. and C. A. Jones. 1978. Factors affecting metabolism and ferrous iron oxidation in suspension and batch culture of Thiobacillus ferrooxidans: Relevance to ferric leach solution regeneration, pp. 19-43. In L. E. Murr, A. E. Torma, and J. A. Brierley (eds.), Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena. Academic Press, New York, U.S.A
8 Boon, M., M. Snijder, G. S. Hansford, and J. J. Heijnen. 1998. The oxidation kinetics of zinc sulphide with Thiobacillus ferrooxidans. Hydrometallurgy 33: 137-152
9 Barron, J. L. and D. R. Luecking. 1990. Growth and maintenance of Thiobacillus ferrooxidans cells. Appl. Environ. Microbiol. 56: 2801-2806
10 DHughes, P., P. Cezac, T. Cabral, F. Battaglia, X. M. Truong- Meyer, and D. Morin. 1997. Bioleaching of a cobaltiferous pyrite: A continuous laboratory-scale study at high solids concentration. Miner. Eng. 10: 507-527
11 Jensen, A. B. and C. Webb. 1995. Ferrous sulphate oxidation using Thiobacillus ferrooxidans: A review. Process Biochem. 30: 225-236
12 Nyavor, K., N. O. Egiebor, and P. M. Fedorak. 1996. The effect of ferric ion on the rate of ferrous oxidation by Thiobacillus ferrooxidans. Appl. Microbiol. Biotechnol. 45: 688-691
13 Nemati, M. and C. Webb. 1997. A kinetic model for biological oxidation of ferrous iron by Thiobacillus ferrooxidans. Biotechnol. Bioeng. 53: 478-485
14 Shrihari, J. M., R. Kumar, and K. S. Gandhi. 1990. Modelling of Fe2+ oxidation by Thiobacillus ferrooxidans. Appl. Microbiol. Biotechnol. 33: 524-528
15 American Public Health Association, American Water Works Association, and Water Environment Federation. 1995. Standard Methods for the Examination of Water and Wastewater. 19th Ed. APHA, Washington, DC, U.S.A
16 Braddock, J. F., H. V. Luong, and E. J. Brown. 1984. Growth kinetics of Thiobacillus ferrooxidans isolated from arsenic mine drainage. Appl. Environ. Microbiol. 48: 48-55
17 Tomizuka, N. and H. Yagisawa. 1976. Continuous leaching of uranium by Thiobacillus ferrooxidans. Agric. Biol. Chem. 40: 1019-1025
18 Fowler, T. A., P. R. Holmes, and F. K. Crundwell. 1999. Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 65: 2987-2993
19 Smith, J. R. 1988. Microbial ferrous iron oxidation in acidic solution. J. Water Pollut. Control Fed. 60: 518-529