Browse > Article
http://dx.doi.org/10.1007/s13143-018-0028-9

The Korean Integrated Model (KIM) System for Global Weather Forecasting  

Hong, Song-You (Korea Institute of Atmospheric Prediction Systems (KIAPS))
Kwon, Young Cheol (Korea Institute of Atmospheric Prediction Systems (KIAPS))
Kim, Tae-Hun (Korea Institute of Atmospheric Prediction Systems (KIAPS))
Kim, Jung-Eun Esther (Korea Institute of Atmospheric Prediction Systems (KIAPS))
Choi, Suk-Jin (Korea Institute of Atmospheric Prediction Systems (KIAPS))
Kwon, In-Hyuk (Korea Institute of Atmospheric Prediction Systems (KIAPS))
Kim, Junghan (Korea Institute of Atmospheric Prediction Systems (KIAPS))
Lee, Eun-Hee (Korea Institute of Atmospheric Prediction Systems (KIAPS))
Park, Rae-Seol (Korea Institute of Atmospheric Prediction Systems (KIAPS))
Kim, Dong-Il (Korea Institute of Atmospheric Prediction Systems (KIAPS))
Publication Information
Asia-Pacific Journal of Atmospheric Sciences / v.54, no.sup1, 2018 , pp. 267-292 More about this Journal
Abstract
The Korea Institute of Atmospheric Prediction Systems (KIAPS) began a national project to develop a new global atmospheric model system in 2011. The ultimate goal of this 9-year project is to replace the current operational model at the Korea Meteorological Administration (KMA), which was adopted from the United Kingdom's Meteorological Office's unified model (UM) in 2010. The 12-km Korean Integrated Model (KIM) system, consisting of a spectral-element non-hydrostatic dynamical core on a cubed sphere grid and a state-of-the-art physics parameterization package, has been launched in a real-time forecast framework, with initial conditions obtained via the advanced hybrid four-dimensional ensemble variational data assimilation (4DEnVar) over its native grid. A development strategy for KIM and the evolution of its performance in medium-range forecasts toward a world-class global forecast system are described. Outstanding issues in KIM 3.1 as of February 2018 are discussed, along with a future plan for operational deployment in 2020.
Keywords
Numerical weather prediction; global forecast system; WRF; GRIMs; KIM;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Hong, S.-Y., and J. Jang, 2018: Impacts of shallow convection processes on a simulated boreal summer climatology in a global atmospheric model (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0013-3.
2 Hong, S.-Y., J. Duhdia, and S.-H. Chen, 2004: A revised approach to icemicrophysical processes for the bulk parameterization of cloud and precipitation. Mon. Wea. Rev., 132, 103-120.   DOI
3 Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341.   DOI
4 Hong, S.-Y., J. Choi, E.-C. Chang, H. Park, and Y.-J. Kim, 2008: Lowertropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model. Wea. Forecasting, 23, 523-531.   DOI
5 Hong, S.-Y., and Coauthors, 2013a: The Global/Regional Integrated Model system (GRIMs). Asia-Pac. J. Atmos. Sci., 49, 219-243, doi:10.1007/s13143-013-0023-0.   DOI
6 Hong, S.-Y., M. Koo, J. Jang, J. Esther Kim, H. Park, M. Joh, J. Kang, and T. Oh, 2013b: An evaluation of the system software dependency of a global spectral model. Mon. Wea. Rev., 141, 4165-4172, doi:10.1175/MWR-D-12-00352.1.   DOI
7 Iacono, M.-J., J. S. Delamere, E. J. Mlawer, M. W. Shepherd, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculation with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.   DOI
8 Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge Univsersity Press, 341 pp.
9 Kanamitsu, M., 1989: Description of the NMC Global Data Assimilation and Forecast System. Wea. Forecasting, 4, 335-342, https://doi.org/10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2.   DOI
10 Kanamitsu, M., K. Tada, T. Kuo, N. Sato and S. Isa, 1983: Description of the JMA operational spectral model. J. Meteor. Soc. Japan, 61, 812-828.   DOI
11 Kim, J, Y. C. Kwon, and T.-H. Kim, 2018a: A scalable high-performance I/O System for a numerical weather forecast model on the cubed-sphere grid (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0021-3.
12 Kang, H.-G., and H.-B. Cheong, 2017: An efficient implementation of a high-order filter for a cubed-sphere spectral element model. J. Comput. Phys., 332, 66-82, doi:10.1016/j.jcp.2016.12.001.   DOI
13 Kang, J.-H., and Coauthors, 2018: Development of an observation processing package for data assimilation in KIAPS (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0030-2.
14 Kim, E.-J., and S.-Y. Hong, 2010: Impact of air-sea interaction on East Asian summer monsoon climate in WRF. J. Geophys. Res., 115, D19118, doi:10.1029/2009JD013253.   DOI
15 Kim, K.-H., P.-S. Shim, S. Shin, and J. Kim, 2018b: A simple method to find a neighboring grid point on the cubed-sphere (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0027-x.
16 Kim, S.-Y., and S.-Y. Hong, 2018: The use of partial cloudiness in a bulk cloud microphysics scheme: Concept and 2D results (in press). J. Atmos. Sci., doi:10.1175/JAS-D-17-0234.1.
17 Kim, Y.-J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 1875-1902.   DOI
18 Koo, M.-S., and S.-Y. Hong, 2014: Stochastic representation of dynamic model tendency: Formulation and preliminary results. Asia-Pac. J. Atmos. Sci., 50, 497-506, doi:10.1007/s13143-014-0039-0.   DOI
19 Long, P. E., 1986: An economical and compatible scheme for parameterizing the stable surface layer in the medium range forecast model. NCEP Office Note 321, 24 pp.
20 Long, P. E., 1984: A general unified similarity theory for the calculation of turbulent fluxes in numerical weather prediction models for unstable conditions. NCEP Office Note 302, 30 pp.
21 Lorenc, A. C., N. E. Bowler, A. M. Clayton, S. R. Pring, and D. Fairbairn, 2015: Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon. Wea. Rev., 143, 212-229, doi:10.1175/MWR-D-14-00195.1.   DOI
22 Mahrt, L., 2008: Bulk formulation of surface fluxes extended to weakwind stable conditions. Quart. J. Roy. Meteorol. Soc., 134, 1-10.   DOI
23 Majewski, D., D. Liermann, P. Prohl, B. Ritter, M. Buchhold, T. Hanisch, G. Paul, W. Wergen, and J. Baumgardner, 2002: The operational global icosahedral-hexagonal gridpoint model GME: Description and highresolution tests. Mon. Wea. Rev., 130, 319-338.   DOI
24 McFarlane, N. A., 1987: The Effect of Orographically Excited Gravity Wave Drag on the General Circulation of the Lower Stratosphere and Troposphere. J. Atmos. Sci., 44, 1775-1800.   DOI
25 McNally, T., M. Bonvita, and J.-N. The ipaut, 2014: The role of satellite data in the forecasting of Hurricane Sandy. Mon. Wea. Rev., 142, 634-646, doi:10.1175/MWR-D-13-00170.1.   DOI
26 Park, H., S.-Y. Hong, H.-B. Cheong, and M.-S. Koo, 2013: A double Fourier series (DFS) dynamic core in a global atmospheric model with full physics. Mon. Wea. Rev., 141, 3052-3061, doi:10.1175/MWR-D-12-00270.1.   DOI
27 Park, R.-S., J.-H. Chae, and S.-Y. Hong, 2016: A revised prognostic cloud fraction scheme in a global forecasting system. Mon. Wea. Rev., 144, 1219-1229, doi:10.1175/MWR-D-15-0273.1.   DOI
28 Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.
29 Song, H.-J., J.-H. Ha, I.-H. Kwon, J. Kim, and J. Kwun, 2018: Multiresolution Hybrid Data Assimilation Core on a Cubed-sphere Grid (HybDA). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0018-y.
30 Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 3019-3032.   DOI
31 Skamarock, W. C., J. B. Klemp, M.G. Duda, L.D. Fowler, S. Park, and T.D. Ringler, 2012: A multi-scale nonhydrostatic atmospheric model using centroidal voronoi tesselations and c-grid staggering. Mon. Wea. Rev., 140, 3090-3105, doi:10.1175/MWR-D-11-00215.1.   DOI
32 Tomita, H., and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357-400.   DOI
33 Taylor, M. A., J. Tribbia, and M. Iskandarani, 1997: The spectral element method for the shallow water equations on the sphere. J. Comput. Phys., 130, 92-108.   DOI
34 Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779-1800.   DOI
35 Tiedtke, M., 1993: Representation of clouds in large-scale models, Mon. Wea. Rev., 121, 3040-3061.   DOI
36 Viterbo, P., A. Beljaars, J.-F. Mahfouf, and J. Teixeira, 1999: The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteorol. Soc., 125, 2401-2426.   DOI
37 Warner, C. D. and M. E. McIntyre, 2001: An ultrasimple spectral parameterization for nonorographic gravity waves. J. Atmos. Sci., 58, 1837-1857.   DOI
38 Sela, J. G., 1980: Spectral modeling at the National Meteorological Center. Mon. Wea. Rev., 108, 1279-1292.   DOI
39 Rabier, F., 2005: Overview of global data assimilation developments in numerical weather prediction centres. Quart. J. Roy. Meteor. Soc., 131, 3215-3233, doi:10.1256/qj.05.129.   DOI
40 Randall, D. A., R. Heikes, and T. Ringer, 2000: General Circulation Model Development. Academic Press, 416 pp.
41 Sadourny, R., 1972: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Wea. Rev., 100, 136-144.   DOI
42 Shin, H. H., and S.-Y. Hong, 2013: Analysis on resolved and parameterized vertical transport in convective boundary layers at gray-zone resolution. J. Atmos. Sci., 70, 3248-3261, doi:10.1175/JAS-D-12-0290.1.   DOI
43 Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250-271, doi:10.1175/MWR-D-14-00116.1.   DOI
44 Shin, S., and Coauthors, 2018: Real data assimilation using the Local Ensemble Transform Kalman Filter (LETKF) system for a global nonhydrostatic NWP model on the cubed-sphere (in press). Asia-Pac. J. Atmos. Sci., 54, doi: 10.1007/s13143-018-0022-2.
45 Zangl, G., D. Reinert, M.-P. Ripodas, and M. Baldauf, 2014: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Quart. J. Roy. Meteor. Soc., 141, 563-579, doi:10.1002/qj.2378.
46 Wedi, N. P., M. Hamrud, and G. Mozdzynski, 2013: A fast spherical harmonics transform for global NWP and climate models. Mon. Wea. Rev., 141, 3450-3461, doi:10.1175/MWR-D-13-00016.1.   DOI
47 Wilson, D. R. and D. Gregory, 2003: The behaviour of large-scale model cloud schemes under idealized forcing scenarios. Quart. J. Roy. Meteorol. Soc., 129, 967-986.   DOI
48 Winton, M., 2000: A Reformulated Three-Layer Sea Ice Model. J. Atmos. Oceanic Technol., 17, 525-531.   DOI
49 Zeng, X., Z. Wang, and A. Wang, 2012: Surface skin temperature and the interplay between sensible and ground heat fluxes over arid regions. J. Hydrometeor., 13, 1359-1370, doi:10.1175/JHM-D-11-0117.1.   DOI
50 Song, H.-J., and I.-H. Kwon, 2015: Spectral transformation using a cubedsphere grid for a three-dimensional variational data assimilation system. Mon. Wea. Rev., 143, 2581-2599, doi:10.1175/MWR-D-14-00089.1.   DOI
51 Song, H.-J., S. Shin, J.-H. Ha, and S. Lim, 2017: The advantages of hybrid 4DEnVar in the context of the forecast sensitivity to initial conditions. J. Geophys. Res., 122, 12226-12244, doi:10.1002/2017JD027598.
52 Buehner, M., and Coauthors, 2015: Implementation of deterministic weather forecasting systems based on ensemble-variational data assimilation at Environment Canada. Part I: The global system. Mon. Wea. Rev., 143, 2532-2559, doi:10.1175/MWR-D-14-00354.1.   DOI
53 ACEC (Advanced Computing Evaluation Committee), 2016: NGGPS phase-2 Benchmarks and Software Evaluation. AVEC Rep., 13 pp.
54 Bae, S.-Y., S.-Y. Hong, and K.-S. Lim, 2016: Coupling WRF doublemoment 6-class microphysics schemes to RRTMG radiation scheme in weather research and forecasting Model. Adv. Meteor., 2016, 5070154, doi:10.1155/2016/5070154.
55 Baek, S., 2017: A revised radiation package of G-packed McICA and twostream approximation: Performance evaluation in a global weather forecasting model. J. Adv. Model. Earth Syst., 9, 1628-1640, doi:10.1002/2017MS000994.   DOI
56 Alpert, J. C., M. Kanamitsu, P. M. Caplan, J. G. Sela, G. H. White, and E. Kalnay, 1988: Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model. Proc. Eighth Conference on Numerical Weather Prediction, Baltimore, USA, Amer. Meteor. Soc. 726-733.
57 Bonavita, M., L. Isaksen, and E. Holm, 2012: On the use of EDA background error variances in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 138, 1540-1559, doi:10.1002/qj.1899.   DOI
58 Chen, F., and J. Dudhia, 2001: Coupling an advanced land surfacehydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model Implementation and Sensitivity. Mon. Wea. Rev., 129, 569-585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.   DOI
59 Koo, M.-S., H.-J. Choi, and J.-Y. Han, 2018: A parameterization of turbulentscale orographic form drag in a global atmospheric model. AOGS 15th Annual Meeting, Honolulu, Hawaii, United States, AS20-A039 [Available online at http://www.asiaoceania.org/aogs2018/doc/AOGS2018_prgbook.pdf].
60 Koo, M.-S., S. Baek, K.-H. Seol, and K. Cho, 2017: Advances in land surface modeling of KIAPS based on the Noah land surface model. Asia-Pac. J. Atmos. Sci., 53, 361-373, doi:10.1007/s13143-017-0043-2.   DOI
61 Kwon, I.-H., S. English, W. Bell, R. Potthast, A. Collard, and B. Ruston, 2018: Assessment of progress and status of data assimilation in numerical weather prediction. Bull. Amer. Soc., 99, ES75-ES79, doi:10.1175/BAMS-D-17-0266.1.   DOI
62 Kwon, I.-H., and Coauthors, 2018: Development of operational hybrid data assimilation system at KIAPS (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0029-8.
63 Kwon, Y. C., and S.-Y. Hong, 2017: A mass-flux cumulus parameterization scheme across gray-zone resolutions. Mon. Wea. Rev., 145, 583-598, doi:10.1175/MWR-D-16-0034.1.   DOI
64 Lee, E.-H., E. Lee, R. Park, Y.-C. Kwon, and S.-Y. Hong, 2018: Impact of turbulent Mmixing in the stratocumulus-topped boundary layer on numerical weather prediction (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0024-0.
65 Choi, H.-J., S.-J. Choi, M.-S. Koo, J.-E. Kim, Y. C. Kwon, and S.-Y. Hong, 2017: Effects of parameterized orographic drag on weather forecasting and simulated climatology over East Asia during boreal summer. J. Geophys. Res., 122, 10669-10678, doi:10.1002/ 2017JD026696.   DOI
66 Cheong, H.-B., 2006: A dynamical core with double Fourier series: Comparison with the spherical harmonics method. Mon. Wea. Rev., 134, 1299-1315.   DOI
67 Choi, H.-J., and H.-Y. Chun, 2011: Momentum flux spectrum of convective gravity waves. Part I: an update of a parameterization using mesoscale simulations. J. Atmos. Sci., 68, 739-759, doi:10.1175/2010-JAS3552.1.   DOI
68 Choi, H.-J., and S.-Y. Hong, 2015: An updated subgrid orographic parameterization for global atmospheric forecast. J. Geophys. Res., 120, 12445-12457, doi:10.1002/2015JD024230.
69 Lin, S.-J., L. Harris, X. Chen. W. Yao, and J. Chai, 2017: Colliding modons: A nonlinear test for the evaluation of global dynamical cores. J. Adv. Model. Earth Syst., 9, 2483-2492, doi:10.1002/2017MS000965.   DOI
70 Lim, K.-S., S.-Y. Hong, J.-H. Yoon, and J. Han, 2014: Simulation of the summer monsoon rainfall over East Asia using the NCEP GFS cumulus parameterization at different horizontal resolution. Wea. Forecasting, 29, 1143-1154, doi:10.1175/WAF-D-13-00143.1.   DOI
71 Choi, S.-J., F. X. Giraldo, J. Kim, and S. Shin, 2014: Verification of a nonhydrostatic dynamical core using horizontally spectral element vertically finite difference method: 2-D aspects. Geosci. Model Dev., 7, 2717-2731, doi:10.5194/gmd-7-2717-2014.   DOI
72 Choi, H.-J., J.-Y. Han, M.-S. Koo, H.-Y. Chun, Y.-H. Kim, and S.-Y. Hong, 2018: Effects of non-orographic gravity wave drag on seasonal and medium-range predictions in a global model (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0023-1.
73 Choi, S.-J., 2018: Structure of Eigenvalues in the advection-diffusion equation by the spectral element method on a cubed-sphere grid (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0020-4.
74 Choi, S.-J., and S.-Y. Hong, 2016: A global non-hydrostatic dynamical core using the spectral element method on a cubed-sphere grid. Asia-Pac. J. Atmos. Sci., 52, 291-307, doi:10.1007/s13143-016-0005-0.   DOI
75 Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, D22, doi:10.1029/2002JD003296.
76 Chun, H.-Y., and J.-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 3299-3310.   DOI
77 Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 1445-1461, doi:10.1002/qj.2054.   DOI
78 Dennis, J., J. Edwards, K. J. Evans, O. N. Guba, P. H. Lauritzen, A. A. Mirin, A. St-Cyr, M. A. Taylor, and P. H. Worly, 2011: CAM-SE: a scalable spectral element dynamical core for the community atmosphere model. Int. J. High Perform Comput. Appl., 26, 74-89, doi:10.1177/1094342011428142, doi:10.1177/1094342011428142.
79 Govett, M., and Coauthors, 2017: Parallelization and performance of the NIM weather model on CPU, GPU, and MIC processors. Bull. Amer. Meteor. Soc., 98, 2201-2213, doi:10.1175/BAMS-D-15-00278.1.   DOI
80 Giraldo, F. X., J. F. Kelly, and E. M. Constantinescu, 2013: Implicit-Explicit Formulations for a 3D Nonhydrostatic Unified Model of the Atmosphere (NUMA). SIAM J. Sci. Comput., 35, B1162-B1194, doi:10.1137/120876034.   DOI
81 Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520-533, doi:10.1175/WAF-D-10-05038.1.   DOI
82 Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.
83 Han, J.-Y., S.-Y. Hong, K.-S. S. Lim, and J. Han, 2016: Sensitivity of a cumulus parameterization scheme to precipitation production representation and its impact on a heavy rain event over Korea. Mon. Wea. Rev., 144, 2125-2135, doi:10.1175/MWR-D-15-0255.1.   DOI
84 Haywood, J., 2009: The strategy for aerosols and dust in climate, weather and air quality forecasting. MOSAC-14, Paper No. 14.11, 15 pp.
85 Hong, S.-Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 1481-1496, doi:10.1002/qj.665.   DOI
86 Hong, S.-Y., and J. Dudhia, 2012: Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddies. Bull. Amer. Meteor. Soc., 93, ES6-ES9, doi:10.1175/2011BAMS3224.1.
87 Hong, S.-Y., and M. Kanamitsu, 2014: Dynamical downscaling: Fundamental issues from an NWP point of view and recommendations. Asia-Pac. J. Atmos. Sci., 50, 83-104, doi:10.1007/s13143-014-0029-2.   DOI