1 |
T. Akyel and B. N. Ornek, Some Remarks on Schwarz lemma at the boundary, Filomat 31 (13) (2017), 4139-4151.
DOI
|
2 |
T. A. Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Variables and Elliptic Equations 58 (2013), 571-577.
DOI
|
3 |
H. P. Boas, Julius and Julia: Mastering the Art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), 770-785.
DOI
|
4 |
V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. 122 (2004), 3623-3629.
DOI
|
5 |
G. M. Golusin, Geometric Theory of Functions of Complex Variable [in Russian], 2nd edn., Moscow 1966.
|
6 |
I. S. Jack, Functions starlike and convex of order , J. London Math. Soc. 3 (1971), 469-474.
DOI
|
7 |
M. Mateljevic, Rigidity of holomorphic mappings & Schwarz and Jack lemma, DOI:10.13140/RG.2.2.34140.90249, In press.
|
8 |
P. R. Mercer, Sharpened Versions of the Schwarz Lemma, Journal of Mathematical Analysis and Applications 205 (1997), 508-511.
DOI
|
9 |
P. R. Mercer, Boundary Schwarz inequalities arising from Rogosinski's lemma, Journal of Classical Analysis 12 (2018), 93-97.
DOI
|
10 |
P. R. Mercer, An improved Schwarz Lemma at the boundary, Open Mathematics 16 (2018), 1140-1144.
DOI
|
11 |
R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000) 3513-3517.
DOI
|
12 |
B. N. Ornek and T. Duzenli, Bound Estimates for the Derivative of Driving Point Impedance Functions, Filomat, 32(18) (2018), 6211-6218..
DOI
|
13 |
B. N. Ornek and T. Duzenli, Boundary Analysis for the Derivative of Driving Point Impedance Functions, IEEE Transactions on Circuits and Systems II: Express Briefs, 65 (9) (2018), 1149-1153.
DOI
|
14 |
J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337-346.
DOI
|
15 |
B. N. Ornek, Sharpened forms of the Schwarz lemma on the boundary, Bull. Korean Math. Soc. 50 (6) (2013), 2053-2059.
DOI
|
16 |
Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin. 1992.
|
17 |
M. Fekete and G. Szego, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. Lond. Math. Soc. 2 (1933), 85-89
|
18 |
O. Ahuja, M. Kasthuri, G. Murugusundaramoorthy and K. Vijaya, Upper bounds of second Hankel determinant for universally prestarlike functions, J. Korean Math. Soc. 55 (5) (2018), 1019-1030.
DOI
|