SURFACES GENERATED VIA THE EVOLUTION OF SPHERICAL IMAGE OF A SPACE CURVE |
Soliman, M.A.
(Department of Mathematics Assiut University)
H.Abdel-All, Nassar (Department of Mathematics Assiut University) Hussien, R.A. (Department of Mathematics Assiut University) Shaker, Taha Youssef (Department of Mathematics Assiut University) |
1 | P. Pelce, Dynamics of Curved Fronts, Academic Press, New York, (1988). |
2 | R.C. Brower et al., Geometrical models of interface evolution, Phys. Rev. A. 30 (1984), 3161-3174. DOI |
3 | R. E. Goldstein and D. M. Petrich, The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane, Phys. Rev. Lett. 67 (1991), 3203-3206. DOI |
4 | K. Nakayama, H. Segur and M. Wadati, Integrability and the motion of curve, Phys. Rev. Lett. 69 (1992), 2603-2606. DOI |
5 | K. Nakayama, J. Hoppe and M. Wadati, On the level-set formulation of geometrical models, J. Phys. So. Japan. 64 (1995), 403-406. DOI |
6 | Takeya Tsurumi et al., Motion of curves specified by accelerations, Physics Letters A. 224 (1997), 253-263. DOI |
7 | D.Y. Kwon and F.C. Park, Evolution of inelastic plane curves, Appl. Math. Lett. 12 (1999), 115-119. |
8 | D.Y. Kwon, F.C. Park and D.P. Chi, Inextensible flows of curves and developable surfaces, Appl. Math. Lett. 18 (2005), 1156-1162. DOI |
9 | Ahmad T. Ali and M.Turgut, Position vector of a timelike slant helix in Minkowski 3-Space, J. Math. Anal. Appl. 365 (2010), 559-569. DOI |
10 | Ahmad T. Ali, Position vectors of slant helices in Euclidean space, J. Egypt. Math. Soc. 20 (2012) 1-6. DOI |
11 | Ahmad T. Ali, New special curves and their spherical indicatrices, Global J. Adv. Res. Class. Mod. Geom. 1 (2012), 28-38. |
12 | Murat Babaarslan et al., A note on Bertrand curves and constant slope surfaces according to Darboux frame, J. Adv. Math. Stud. 5 (2012) 87-96. |
13 | S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turk. J. Math. 28 (2004), 153-163. |
14 | S. Izumiya and N. Takeuchi, Generic properties of helices and Bertrand curves, J Geom. 74 (2002), 97-109. DOI |
15 | L. Kula and Y. Yayli, On slant helix and its spherical indicatrix, Appl. Math. Comput. 169 (2005), 600-607. |
16 | L. Kula, N. Ekmekci, Y. Yayh. and K. Ilarslan, Characterizations of slant helices in Euclidean 3-space, Turk J Math. 34 (2010) ,261-273. |
17 | S. Yilmaz and M. Turgut, A new version of Bishop frame and an application to spherical images, J. Math. Anal. Appl. 371 (2010) ,764-776. DOI |
18 | L. P. Eisenhart, A treatise on the differential geometry of curves and surfaces, New York, Dover, (1960). |
19 | E. Turhan and T. Korpynar, New Approach for binormal spherical image in terms of inextensible flow in , Prespacetime Journal. 4 (2013), 342-355. |
20 | E. Turhan and T. Korpynar, Time evolution equation for surfaces generated via binormail spherical image in terms of inextensible flow, J. Dyn. Syst. Geom. Theor. 12 (2014), 145-157. |
21 | S. K. Chung, A study on the spherical indicatrix of a space curve in , J. Korea Soc. Math. Educ. 20 (1982), 23-26. |
22 | C. Rogers and W. K. Schief, Backlund and Darboux transformations geometry and modern application in soliton theory, Cambridge University press, Cambridge, (2002). |