Browse > Article
http://dx.doi.org/10.11568/kjm.2018.26.3.425

SURFACES GENERATED VIA THE EVOLUTION OF SPHERICAL IMAGE OF A SPACE CURVE  

Soliman, M.A. (Department of Mathematics Assiut University)
H.Abdel-All, Nassar (Department of Mathematics Assiut University)
Hussien, R.A. (Department of Mathematics Assiut University)
Shaker, Taha Youssef (Department of Mathematics Assiut University)
Publication Information
Korean Journal of Mathematics / v.26, no.3, 2018 , pp. 425-437 More about this Journal
Abstract
In this paper, we linked the motion of spherical images with the motion of their curves. Surfaces generated by the evolution of spherical image of a space curve are constructed. Also geometric proprieties of these surfaces are obtained.
Keywords
Curve evolution; Spherical image; Surface generated;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Pelce, Dynamics of Curved Fronts, Academic Press, New York, (1988).
2 R.C. Brower et al., Geometrical models of interface evolution, Phys. Rev. A. 30 (1984), 3161-3174.   DOI
3 R. E. Goldstein and D. M. Petrich, The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane, Phys. Rev. Lett. 67 (1991), 3203-3206.   DOI
4 K. Nakayama, H. Segur and M. Wadati, Integrability and the motion of curve, Phys. Rev. Lett. 69 (1992), 2603-2606.   DOI
5 K. Nakayama, J. Hoppe and M. Wadati, On the level-set formulation of geometrical models, J. Phys. So. Japan. 64 (1995), 403-406.   DOI
6 Takeya Tsurumi et al., Motion of curves specified by accelerations, Physics Letters A. 224 (1997), 253-263.   DOI
7 D.Y. Kwon and F.C. Park, Evolution of inelastic plane curves, Appl. Math. Lett. 12 (1999), 115-119.
8 D.Y. Kwon, F.C. Park and D.P. Chi, Inextensible flows of curves and developable surfaces, Appl. Math. Lett. 18 (2005), 1156-1162.   DOI
9 Ahmad T. Ali and M.Turgut, Position vector of a timelike slant helix in Minkowski 3-Space, J. Math. Anal. Appl. 365 (2010), 559-569.   DOI
10 Ahmad T. Ali, Position vectors of slant helices in Euclidean space, J. Egypt. Math. Soc. 20 (2012) 1-6.   DOI
11 Ahmad T. Ali, New special curves and their spherical indicatrices, Global J. Adv. Res. Class. Mod. Geom. 1 (2012), 28-38.
12 Murat Babaarslan et al., A note on Bertrand curves and constant slope surfaces according to Darboux frame, J. Adv. Math. Stud. 5 (2012) 87-96.
13 S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turk. J. Math. 28 (2004), 153-163.
14 S. Izumiya and N. Takeuchi, Generic properties of helices and Bertrand curves, J Geom. 74 (2002), 97-109.   DOI
15 L. Kula and Y. Yayli, On slant helix and its spherical indicatrix, Appl. Math. Comput. 169 (2005), 600-607.
16 L. Kula, N. Ekmekci, Y. Yayh. and K. Ilarslan, Characterizations of slant helices in Euclidean 3-space, Turk J Math. 34 (2010) ,261-273.
17 S. Yilmaz and M. Turgut, A new version of Bishop frame and an application to spherical images, J. Math. Anal. Appl. 371 (2010) ,764-776.   DOI
18 L. P. Eisenhart, A treatise on the differential geometry of curves and surfaces, New York, Dover, (1960).
19 E. Turhan and T. Korpynar, New Approach for binormal spherical image in terms of inextensible flow in $E^3$, Prespacetime Journal. 4 (2013), 342-355.
20 E. Turhan and T. Korpynar, Time evolution equation for surfaces generated via binormail spherical image in terms of inextensible flow, J. Dyn. Syst. Geom. Theor. 12 (2014), 145-157.
21 S. K. Chung, A study on the spherical indicatrix of a space curve in $E^3$, J. Korea Soc. Math. Educ. 20 (1982), 23-26.
22 C. Rogers and W. K. Schief, Backlund and Darboux transformations geometry and modern application in soliton theory, Cambridge University press, Cambridge, (2002).