Browse > Article
http://dx.doi.org/10.11568/kjm.2017.25.2.147

REGULARIZED PENALTY METHOD FOR NON-STATIONARY SET VALUED EQUILIBRIUM PROBLEMS IN BANACH SPACES  

Salahuddin, Salahuddin (Department of Mathematics Jazan University)
Publication Information
Korean Journal of Mathematics / v.25, no.2, 2017 , pp. 147-162 More about this Journal
Abstract
In this research works, we consider the general regularized penalty method for non-stationary set valued equilibrium problem in a Banach space. We define weak coercivity conditions and show that the weak and strong convergence problems of the regularized penalty method.
Keywords
Non-stationary set valued equilibrium problems; Set valued mappings; Non-monotone bi-functions; General regularized penalty method; Coercivity conditions; Strong convergence; Hausdorff metric; Banach spaces;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. S. Antipin and F. P. Vasilev, A stabilization method for equilibrium program-ming problems with an approximately given set, Comput. Math. Math. Phys. 39(1999), 1707-1714.
2 C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities: Ap-plications to Free Boundary Problems, Wiley, New York, 1984.
3 A. B. Bakushinskii and A. V. Goncharskii, Iterative Methods for Ill-Posed Prob-lems, Nauka, Moscow, 1989, [in Russian].
4 M. Bianchi and R. Pini, Coercivity conditions for equilibrium problems, J. Optim. Theory Appl. 124 (2000), 79-92.
5 E. Blum and W. Oettli, From optimization and variational inequalities to equi-librium problems, Math. Stud. 63 (1994), 123-145.
6 Ky. Fan, A minimax inequality and applications, In: O. Shisha, (ed.) Inequalities III, pp. 103-113. Academic Press, New York, 1972.
7 J. Gwinner, On the regularization of monotone variational inequalities, Oper. Res. Verfahren 28 (1978), 374-386.
8 J. Gwinner, On the penalty method for constrained variational inequalities, In: J.-B. Hiriart-Urruty, W. Oettli, J. Stoer, (eds.) Optimization: Theory and Al-gorithms, pp. 197-211. Marcel Dekker, New York, 1981.
9 L. D. Muu and W. Oettli, A Lagrangian penalty function method for monotone variational inequalities, Numer. Funct. Anal. Optim. 10 (1989), 1003-1017.   DOI
10 I. V. Konnov, Combined Relaxation Methods for Variational Inequalities, Springer, Berlin, 2001.
11 I. V. Konnov, Combined relaxation methods for generalized monotone variational inequalities, In: I. V. Konnov, D. T. Luc, A. M. Rubinov, (eds.) Generalized Convexity and Related Topics, pp. 3-31, Springer, Berlin, 2007.
12 I. V. Konnov, Regularization method for nonmonotone equilibrium problems, J. Nonlinear Convex Anal. 10 (2009), 93-101.
13 I. V. Konnov, On penalty methods for non monotone equilibrium problems, J. Glob. Optim. 59 (2014), 131-138.   DOI
14 I. V. Konnov, Regularized penalty method for general equilibrium problems in Banach spaces, J. Optim. Theory Appl. 164 (2015), 500-513.   DOI
15 I. V. Konnov and D. A. Dyabilkin, Nonmonotone equilibrium problems: coerciv-ity conditions and weak regularization, J. Glob. Optim. 49 (2011), 575-587.   DOI
16 I. V. Konnov and Z. Liu, Vector equilibrium problems on unbounded sets, Lobachevskii J. Math. 31 (2010), 232-238.   DOI
17 B. S. Lee, M. F. Khan and Salahuddin, Generalized nonlinear quasi-variational inclusions in Banach spaces, Comput. Maths. Appl. 56 (5) (2008), 1414-1422.   DOI
18 B. S. Lee and Salahuddin, A general system of regularized nonconvex variational inequalities, Appl. Comput. Math. 3 (4) (2014).
19 H. Nikaido and K. Isoda, Note on noncooperative convex games, Pac. J. Math. 5 (1955), 807-815.   DOI
20 J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493-517.   DOI
21 B. T. Polyak, Introduction to Optimization, Nauka, Moscow (1983) (Engl. transl. in Optimization Software, New York, 1987.
22 V. V. Podinovskii and V. D. Nogin, Pareto-Optimal Solutions of Multiple Ob-jective Problems, Nauka, Moscow, 1982.
23 Salahuddin, Regularization techniques for inverse variational inequalities involv-ing relaxed cocoercive mapping in Hilbert spaces, Nonlinear Anal. Forum 19(2014), 65-76.
24 Salahuddin, Convergence analysis for hierarchical optimizations, Nonlinear Anal. Forum 20 (2) (2015), 229-239.
25 Salahuddin, Regularized equilibrium problems in Banach spaces, Korean J. Math. 24 (1) (2016), 51-53.   DOI
26 Salahuddin, On penalty method for non-stationary general set valued equilibrium problems, Commun. Appl. Nonlinear Anal. 23 (4) (2016), 82-92.
27 Salahuddin, Regularized equilibrium problems on Hadamard manifolds, Nonlin-ear Anal. Forum, 21 (2)(2016), 91-101.
28 Salahuddin and R. U. Verma, System of nonlinear generalized regularized non-convex variational inequalities in Banach spaces, Adv. Nonlinear Var. Inequal. 19 (2) (2016), 27-40.
29 A. H. Siddiqi, M. K. Ahmad and Salahuddin, Existence results for generalized nonlinear variational inclusions, Appl. Maths. Letts. 18 (8) (2005), 859-864.   DOI
30 F. P. Vasilev, Methods for Solving Extremal Problems, Nauka, Moscow, 1981, [in Russian].