Browse > Article
http://dx.doi.org/10.11568/kjm.2015.23.4.637

CUBIC PARTITION PAIRS WEIGHTED BY THE PARITY OF THE CRANK  

KIM, BYUNGCHAN (School of Liberal Arts Seoul National University of Science and Technology)
Publication Information
Korean Journal of Mathematics / v.23, no.4, 2015 , pp. 637-642 More about this Journal
Abstract
We study congruence properties of the number of cubic partition pairs weighted by the parity of the crank. If we define such number to be c(n), then $c(5n+4){\equiv}0$ (mod 5) and $c(7n+2){\equiv}0$ (mod 7), for all nonnegative integers n.
Keywords
Partitions; Partition crank; cubic partitions; cubic crank; congruences;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G.E. Andrews, F.G. Garvan, Dyson's crank of a partition, Bull. Amer. Math. Soc. 18 (1988), 167-171.   DOI
2 B.C. Berndt, Number theory in the spirit of Ramanujan, American Mathematical Society, Providence, RI, 2006.
3 H.-C. Chan, Ramanujan's cubic continued fraction and an analog of his "most beautiful identity", Int. J. Number Thy 6 (2010), 673-680.   DOI
4 H.-C. Chan, Ramanujan's cubic continued fraction and Ramanujan type congruences for a certain partition function, Int. J. Number Thy 6 (2010), 819-834.   DOI
5 H.-C. Chan, Distribution of a certain partition function modulo powers of primes, Acta Math. Sin. (Engl. Ser.) 27 (2011), 625-634.
6 D. Choi, S.-Y. Kang, and J. Lovejoy, Partitions weighted by the parity of the crank, J. Combin. Theory Ser. A 116 (2009), 1034-1046.   DOI
7 B. Kim, A crank analog on a certain kind of partition function arising from the cubic continued fraction, Acta. Arith. 148 (2011), 1-19.   DOI
8 B. Kim, Partition Statistics for cubic partition pairs, Electronic J. of Combinatorics 18 (2011), P128.
9 H. Zhao and Z. Zhong, Ramanujan type congruences for a certain partition function, Electronic J. of Combinatorics 18 (2011), P58.