Browse > Article
http://dx.doi.org/10.11568/kjm.2015.23.4.607

DISTANCE TWO LABELING ON THE SQUARE OF A CYCLE  

ZHANG, XIAOLING (College of Mathematics and Computer Science Quanzhou Normal University)
Publication Information
Korean Journal of Mathematics / v.23, no.4, 2015 , pp. 607-618 More about this Journal
Abstract
An L(2; 1)-labeling of a graph G is a function f from the vertex set V (G) to the set of all non-negative integers such that ${\mid}f(u)-f(v){\mid}{\geq}2$ if d(u, v) = 1 and ${\mid}f(u)-f(v){\mid}{\geq}1$ if d(u, v) = 2. The ${\lambda}$-number of G, denoted ${\lambda}(G)$, is the smallest number k such that G admits an L(2, 1)-labeling with $k=\max\{f(u){\mid}u{\in}V(G)\}$. In this paper, we consider the square of a cycle and provide exact value for its ${\lambda}$-number. In addition, we also completely determine its edge span.
Keywords
Channel assignment; L(2, 1)-labeling; square of a cycle; ${\lambda}$-number; edge span;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Calamoneri and R. Petreschi, L(h, 1)-labeling subclasses of planar graphs, J. Parall. Distrib. Comput. 64 (2004), 414-426.   DOI
2 T. Calamoneri, Exact solution of a class of frequency assignment problems in cellular networks and other regular grids, Theor. Comput. Sci. 8 (2006), 141-158.
3 T. Calamoneri, The L(h, k)-labelling problem: an updated survey and annotated bibliography, Computer J. 54 (2011), 1344-1371.   DOI
4 G.J. Chang and D. Kuo, The L(2, 1)-labeling problem on graphs, SIAM J. Discrete Math. 9 (1996), 309-316.   DOI
5 J.P. Georges, D.W. Mauro and M.A. Whittlesey, Relating path coverings to vertex labellings with a condition at distance two, Discrete Math. 135 (1994), 103-111.   DOI
6 J.R. Griggs and R.K. Yeh, Labeling graph with a condition at distance two, SIAM J. Discrete Math. 5 (1992), 586-595.   DOI
7 J.R. Griggs, Real number channel assignments with distance conditions, SIAM J. Discrete Math. 20 (2006), 302-327.   DOI
8 W.K. Hale, Frequency assignment: Theory and applications, Proc. IEEE 68 (1980), 1497-1514.   DOI
9 J. van den Heuvel, R.A. Leese and M.A. Shepherd, Graph labelling and radio channel assignment, J. Graph Theory 29 (1998), 263-283.   DOI
10 L.-H. Huang and G.J. Chang, L(h, k)-labelings of Hamming graphs, Discrete Math. 309 (2009), 2197-2201.   DOI
11 N. Karst, J. Oehrlein, D.S. Troxell and J. Zhu, The minimum span of L(2, 1)-labelings of generalized flowers, Discrete Appl. Math. 181 (2015), 139-151.   DOI
12 M. Kochol, Tension polynomials of graphs, J. Graph Theory 3 (2002), 137-146.
13 A. Kohl, Knotenfarbungen mit Abstandsbedingungen, Dissertation, TU Bergakademie Freiberg, Germany, 2006(in German).
14 D. Korze and A. Vesel, L(2, 1)-labeling of strong products of cycles, Inform. Process Lett. 94 (2005),183-190.   DOI
15 W.F. Wang, The L(2, 1)-labelling of trees, Discrete Appl. Math. 154 (2007), 598-603.
16 S. Paul, M. Pal and A. Pal, L(2, 1)-Labeling of Permutation and Bipartite Permutation Graphs, Math. Comput. Sci. 9 (2015),113-123.   DOI
17 Z. Shao and R.K. Yeh, The L(2, 1)-labeling and operations of graphs, IEEE Trans. Circuits Syst. I Fund. Theory Appl. 52 (2005), 668-671.   DOI
18 Z. Shao and R.K. Yeh, The L(2, 1)-labeling on planar graphs, Appl. Math. Lett. 20 (2007), 222-226.   DOI
19 R.K. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math. 306 (2006), 1217-1231.   DOI
20 R.K. Yeh, The edge span of distance two labelings of graphs, Taiwanese J. Math. 4 (2000), 675-683.   DOI
21 X.L. Zhang and J.G. Qian, L(p, q)-labeling and integer tension of a graph embedded on torus, J. Combin. Optim. 2014, Published on-line, DOI: 10.1007/s10878-014-9714-4.   DOI