Browse > Article
http://dx.doi.org/10.11568/kjm.2015.23.3.439

HARMONIC MAPPING RELATED WITH THE MINIMAL SURFACE GENERATED BY ANALYTIC FUNCTIONS  

JUN, SOOK HEUI (Department of Mathematics Seoul Women's University)
Publication Information
Korean Journal of Mathematics / v.23, no.3, 2015 , pp. 439-446 More about this Journal
Abstract
In this paper we consider the meromorphic function G(z) with a pole of order 1 at -a and analytic function F(z) with a zero -a of order 2 in $\mathbb{D}=\{z :{\mid}z{\mid}<1\}$, where -1 < a < 1. From these functions we obtain the regular simply-connected minimal surface $S=\{(u(z),\;{\nu}(z),\;H(z)):z{\in}\mathbb{D}\}$ in $E^3$ and the harmonic function $f=u+i{\nu}$ defined on $\mathbb{D}$, and then we investigate properties of the minimal surface S and the harmonic function f.
Keywords
harmonic mapping; minimal surface;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. V. Ahlfors, Complex Analysis, McGraw-Hill, New York, 1966.
2 M. Chuaqui, P. Duren and B. Osgood, Curvature properties of planar harmonic mappings, Comput. Methods Funct. Theory 4 (2004), 127-142.   DOI
3 M. Chuaqui, P. Duren and B. Osgood, Univalence criteria for lifts of harmonic mappings to minimal surfaces, J. Geom. Analysis 17 (2007), 49-74.   DOI
4 J. G. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. 9 (1984), 3-25.
5 P. Duren and W. R. Thygerson, Harmonic mappings related to Scherk's saddle-tower minimal surfaces, Rocky Mountain J. Math. 30 (2000), 555-564.   DOI
6 H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689-692.   DOI
7 R. Osserman, A Survey of Minimal Surfaces, Dover, New York, 1986.