CONVERGENCE OF AN IMPLICIT ITERATIVE PROCESS FOR TWO FINITE FAMILIES OF NONEXPANSIVE MAPPINGS |
Cho, S.Y.
(Department of Mathematics Gyeongsang National University)
Kang, S.M. (Department of Mathematics and RINS Gyeongsang National University) Qin, X. (Department of Mathematics Hangzhou Normal University) Kwun, Y.C. (Department of Mathematics Dong-A University) |
1 | F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci. USA 54 (1965), 1041-1044. DOI ScienceOn |
2 | F. E. Browder, Semicontractive and semiaccretive nonlinear mappings in Ba- nach spaces, Bull. Amer. Math. Soc. 74 (1968), 660-665. DOI |
3 | C. E. Chidume and N. Shahzad, Strong convergence of an implicit iteration pro- cess for a finite family of nonexpansive mappings, Nonlinear Anal. 62 (2005), 1149-1156. DOI ScienceOn |
4 | D. van Dulst, Equivalent norms and the fixed point property for nonexpansive mapping, J. Lond. Math. Soc. 25 (1982), 139-144. DOI |
5 | J. G. Falset, W. Kaczor, T. Kuczumow and S. Reich, Weak convergence the- orems for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal. 43 (2001), 377-401. DOI ScienceOn |
6 | Y. Hao, S. Y. Cho and X. Qin, Some weak convergence theorems for a family of asymptotically nonexpansive nonself mappings, Fixed Point Theory Appl. 2010 (2010), Article ID 218573. |
7 | Z. Opial, Weak convergence of the sequence of successive appproximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. DOI |
8 | S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274-276. DOI |
9 | B. E. Rhoades and S. M. Soltuz, The convergence of mean value iteration for a family of maps, Int. J. Math. Math. Sci. 2005 (2005), 3479-3485. DOI ScienceOn |
10 | K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301-308. DOI ScienceOn |
11 | S. Thianwan and S. Suantai, Weak and strong convergence of an implicity iteration process for a finite family of nonexpansive mappings, Sci. Math. Jpn. 66 (2007), 221-229. |
12 | H. K. Xu and M. G. Ori, An implicit iterative process for nonexpansive map- pings, Numer. Funct. Anal. Optim. 22 (2001), 767-773. DOI ScienceOn |