Browse > Article
http://dx.doi.org/10.1007/s12540-015-5376-8

Hydrogen Gas Sensing of Co3O4-Decorated WO3 Nanowires  

Park, Sunghoon (Department of Materials science and Engineering, Inha University)
Sun, Gun-Joo (Department of Materials science and Engineering, Inha University)
Kheel, Hyejoon (Department of Materials science and Engineering, Inha University)
Hyun, Soong Keun (Department of Materials science and Engineering, Inha University)
Jin, Changhyun (School of Mechanical Engineering, Konkuk University)
Lee, Chongmu (Department of Materials science and Engineering, Inha University)
Publication Information
Metals and materials international / v.22, no.1, 2016 , pp. 156-162 More about this Journal
Abstract
$Co_3O_4$ nanoparticle-decorated $WO_3$ nanowires were synthesized by the thermal oxidation of powders followed by a solvothermal process for $Co_3O_4$ decoration. The $Co_3O_4$ nanoparticle-decorated $WO_3$ nanowire sensor exhibited a stronger and faster electrical response to $H_2$ gas at $300^{\circ}C$ than the pristine $WO_3$ nanowire counterpart. The former showed faster response and recovery than the latter. The pristine and $Co_3O_4$-decorated $WO_3$ nanowire sensors showed the strongest response to $H_2$ gas at 225 and $200^{\circ}C$, respectively. The $Co_3O_4$-decorated $WO_3$ nanowire sensor showed selectivity for $H_2$ gas over other reducing gases. The enhanced sensing performance of the $Co_3O_4$-decorated $WO_3$ nanowire sensor was explained by a combination of mechanisms: modulation of the depletion layer width forming at the $Co_3O_4-WO_3$ interface, modulation of the potential barrier height forming at the interface, high catalytic activity of $Co_3O_4$ for the oxidation of $H_2$, active adsorption of oxygen by the $Co_3O_4$ nanoparticle surface, and creation of more active adsorption sites by $Co_3O_4$ nanoparticles.
Keywords
oxides; Sol-gel; hydrogen; electrical conductivity/resistivity; gas sensor;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 A. O. Gulino, P. Dapporto, P. Rossi, and I. Fragala, Chem. Mater. 15, 3748 (2003).   DOI
2 L. Xing, S. Yuan, Z. Chen, Y. Chen, and X. Xue, Nanotechnology 22, 1 (2011).
3 X. Xie, Y. Li, Z. Q. Liu, M. Haruta, and W. Shen, Nature 458, 746 (2009).   DOI
4 S. Park, H. Ko, S. Kim, and C. Lee, ACS Appl. Mater. Interfaces 6, 9595 (2014).   DOI
5 A. K. Chakraborty, Z. Qi, S. Y.Chail, C. Lee, S. Y. Park, D. J. Jang, and W. I. Lee, Appl. Catal. B-Environ. 93, 368 (2010).   DOI
6 M.-C. Shin, J. H. Kim, J.-S. Cha, B. K. Shin, and H. S. Lee, Korean J. Met. Mater. 51, 57 (2013).   DOI
7 J. Tamaki, T. Maekawa, N. Miura, and N. Yamazoe, Sensor. Actuat. B-Chem. 9, 197 (1992).   DOI
8 T. Hubert, L. Boon-Brett, G. Black, and U. Banach, Sensor. Actuat. B-Chem. 157, 329 (2011).   DOI
9 L. Fields, J. Zheng, Y. Cheng, and P. Xiong, Appl. Phys. Lett. 88, 232 (2006).
10 K. Skucha, Z. Fan, K. Jeon, A. Javey, and B. Boser, Sensor. Actuat. B-Chem. 145, 232 (2010).   DOI
11 M. Ramanathan, G. Skudlarek, H. H. Wang, and S. B. Darling, Nanotechnology 21, 125501 (2010).   DOI
12 K. J. Liekus, I. A. Zlochower, K. L. Cashdollar, S. M. Djordjevic, and C. A. Loehr, J. Loss Prevent. Proc. 13, 377 (2000).   DOI
13 S. Park, S. An, H. Ko, C. Jin, and C. Lee, ACS Appl. Mater. Interfaces 4, 3650 (2012).   DOI
14 Y. J. Kwon, H. G. Na, S. S. Kim, P. Wu, and H. W. Kim, Met. Mater. Int. 21, 956 (2015).   DOI
15 W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Y. Wang, Z. Wang, and C. Wang, Sensor. Actuat. B-Chem. 142, 61 (2009).   DOI
16 J. H. Yoon and J. S. Kim, Met. Mater. Int. 16, 773 (2010).   DOI
17 J. M. Lim, K. C. Shin, H. W. Kim, and C. Lee, Thin Solid Films 475, 256 (2005).   DOI
18 M. Law, H. Kind, B. Messer, F. Kim, and P. Yang, Angew. Chem. Int. Edit. 41, 2511 (2002).
19 S. Park, S. An, Y. Mun, and C. Lee, ACS Appl. Mater. Interfaces 5, 4285 (2013).   DOI
20 A. S. Zoolfakar, M. Z. Ahmad, R. A. Rani, J. Z. Ou, S. Balendhran, S. Zhuiykov, K. Latham, W. Wlodarski, and K. Kalantar-zadeh, Sensor. Actuat. B-Chem. 185, 620 (2013).   DOI
21 K. Pirkanniemi and M. Sillanpaa, Chemosphere 48, 1047 (2002).   DOI
22 M. M. Bettahar, G. Costentin, L. Savary, and J. C. Lavalley, Appl. Catal. A-Gen. 145, 1 (1996).   DOI
23 H. R. Kim, K. I. Choi, K. M. Kim, I. D. Kim, G. Cao, and J. H. Lee, Chem. Commun. 46, 5061 (2010).   DOI
24 H. T. Sun, C. Cantalini, L. Lozzi, M. Passacantando, S. Santucci, and M. Pelino, Thin Solid Films 287, 258 (1996).   DOI
25 B. Cao, J. Chen, X. Tang, and W. Zhou, J. Mater. Chem. 19, 2323 (2009).   DOI
26 A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S. Z. Deng, N. S. Xu, Y. Ding, and Z. L. Wang, Appl. Phys. Lett. 88, 203101 (2006).   DOI
27 O. Merdrignac-Conanec and P. T. Moseley, J. Mater. Chem. 12, 1779 (2002).   DOI
28 J. H. Pan, S.Y.Chail, C. Lee, S. E. Park, and W. I. Lee, J. Phys. Chem. C. 111, 5582 (2007).
29 C. S. Rout, A. Govindaraj, and C. N. R. Rao, J. Mater. Chem. 16, 3936 (2006).   DOI
30 I. Jimenez, M. A. Centeno, R. Scotti, F. Morazzoni, J. Arbiol, A. Cornet, and J. R. Morante, J. Mater. Chem. 14, 2412 (2004).   DOI
31 C. C. Li, Z. F. Du, L. M. Li, H. C. Yu, Q. Wan, and T. H. Wang, Appl. Phys. Lett. 91, 032101 (2007).   DOI
32 M. S. Hwang, and C. Lee, Mater. Sci. Eng. B-Adv. 75, 24 (2000).   DOI
33 J. F. Chang, H. H. Kuo, I. C. Leu, and M. H. Hon, Sens. Actuators B 84, 258 (2002).   DOI
34 N. Barsan and U. Weimar, J. Electroceram. 7, 143 (2001).   DOI
35 A. R. Raju and C. N. R. Rao, Sensor. Actuat. B-Chem. 3, 305 (1991).   DOI
36 D. Patil, L. Patil, and P. Patil, Sensor. Actuat. B-Chem. 126, 368 (2007).   DOI
37 D. Miller, S. Akbar, and P. Morris, Sensor. Actuat. B-Chem. 204, 250 (2014).   DOI
38 K. Jain, R. P. Pant, and S. T. Lakshmikumar, Sensor. Actuat. B-Chem. 113, 823 (2006).   DOI
39 E. Salje, J. Appl. Crystallogr. 7, 615 (1974).   DOI