Browse > Article
http://dx.doi.org/10.1007/s12540-013-6035-6

Enhanced Boron Gettering Effect of n-Type Solar Grade Si Wafers by In Situ Oxidation  

Cho, Young Joon (Chungnam National University, Graduate School of Green Energy Technology)
Chang, Hyo Sik (Chungnam National University, Graduate School of Green Energy Technology)
Publication Information
Metals and materials international / v.19, no.6, 2013 , pp. 1377-1380 More about this Journal
Abstract
To investigate the gettering effect of n-type (phosphorous-doped) crystalline Czochralski-silicon (Cz-Si) wafers, we made boron emitters by diffusing boron into them and, subsequently, oxidized the boron-diffused n-type crystalline silicon wafers by in situ wet and dry oxidation. After oxidation, we measured the minority carrier lifetime by using microwave photoconductivity decay (${\mu}$-PCD), open-circuit voltage by quasi-steady-static photoconductance and the sheet resistance by a 4 point probe, respectively. We suggested the boron diffusion and in situ oxidation conditions to achieve longer lifetimes. We can obtain the equivalent lifetime to conventional oxidation through the quartz tube designed for boron doping and in-situ oxidation. The uniformity of sheet resistance under 3% was achieved at relatively low temperature and the lifetime of $21.6{\mu}s$ was also obtained by boron gettering effect and passivation of oxide layer.
Keywords
solar cells; oxidation; boron defects; diffusion; a;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 N. Guillevin, R. C. G. Naber, L. J. Geerligs, and A. W. Weeber, 19th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, p.26 Vail. Co., USA (2009).
2 D. Macdonald and L. J. Geerligs, Appl. Phys. Lett. 85, 4061 (2004).   DOI
3 S. E. Park, Y. D. Kim, S. H. Bae, S. T. Kim, J. Y. Song, H. H. Kim, H. M. Park, S. M. Kim, S. J. Tark, and D. H. Kim, Met. Mater. Int. 18, 731 (2012).   DOI
4 J. E. Cotter, J. H. Guo, P. J. Cousins, M. D. Abbott, F. W. Chen, and K. C. Fisher, IEEE Trans. on Elec. Devi. 53, 1893 (2006).   DOI
5 J. Jourdan, Y. Veschetti, S. Dubois, T. Desrues, and R. Monna, Prog. Photovolt. Res. Appl. 16, 379 (2008).   DOI
6 Y. D. Kim, S. H. Kim, and T. S. Jo, Korean J. Met. Mater. 49, 187 (2011).
7 J. Libal, R. Petres, T. Buck, R. Kopecek, G. Hahn, R. Ferre, M. Vetter, I. Martin, K. Wambach, I. Roever, and P. Fath. Proc. 20th European Photovoltaic Solar Energy Conf. p.793, Barcelona, Spain (2005).
8 J. Schmidt, A. G. Aberle, and R. Hezel, 26th IEEE Photovoltaic Spec. Conf. p.13, Anaheim, USA (1997).
9 H. S. Chang and H.-C. Jung, J. Nanosci. Nanotechnol. 11, 3680 (2011).   DOI
10 J. Libal, R. Petres, R. Kopecek, G. Hahn, K. Wambach, and P. Fath, Proc. 31st IEEE Photovoltaic Spec. Conf., p.1209, Lake Buena Vista, USA (2005).
11 S. A. Mchugo, H. Hieslmair, and E. R. Weber, Appl. Phys. A: Mater. Sci. Process. 64, 127 (1997).   DOI
12 H. M. Park, S. J. Tark, C. S. Kim, S. E. Park, Y. D. Kim, C. S. Son, J. C. Lee, and D. H. Kim, Int. J. Photoenergy 2012, 794876 (2012).
13 O. Schultz, S. W. Glunz, and G. P. Willeke, Prog. Photovolt: Res. Appl. 12, 553 (2004).   DOI
14 N. Ohe, K. Tsutsui, T. Warabisako, and T. Saitoh, Sol. Energy Mater. Sol. Cells 48, 145 (1997).   DOI