Browse > Article
http://dx.doi.org/10.1007/s12540-013-5017-z

Properties and Pulsed Current Activated Consolidation of Nanostuctured $MgSiO_3-MgAl_2O_4$ Composites  

Shon, In-Jin (Chonbuk National University, Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College)
Du, Song-Lee (Chonbuk National University, Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College)
Doh, Jung-Mann (Korea Institute of Science and Technology, Interface Control Research Center)
Yoon, Jin-Kook (Korea Institute of Science and Technology, Interface Control Research Center)
Publication Information
Metals and materials international / v.19, no.5, 2013 , pp. 1041-1045 More about this Journal
Abstract
Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. As nanomaterials possess high strength, high hardness, excellent ductility and toughness, undoubtedly, more attention has been paid for the application of nanomaterials. Nanopowders of MgO, $Al_2O_3$ and $SiO_2$ were made by high energy ball milling. The simultaneous synthesis and consolidation of nanostuctured $MgAl_2O_4-MgSiO_3$ composites from milled 2MgO, $Al_2O_3$ and $SiO_2$ powders was investigated by the pulsed current activated sintering process. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition of grain growth. Highly dense nanostructured $MgAl_2O_4-MgSiO_3$ composites were produced with a simultaneous application of 80 MPa pressure and a pulsed current of 2000A within 1min. The fracture toughness of $MgAl_2O_4-Mg_2SiO_4$ composites sintered from $60mol%MgO-20mol%Al_2O_3-20mol%SiO_2$ powders milled for 4 h was $3.2MPa{\cdot}m^{1/2}$. The fracture toughness of $MgAl_2O_4-MgSiO_3$ composite is higher than that of monolithic $MgAl_2O_4$.
Keywords
sintering; $MgAl_2O_4-MgSiO_3$; composite; nanostructured material; powder metallurgy;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 S. Anappan, L. J. Berchmans, and C. O. Augustin, Mater. Lett. 58, 2283 (2004).   DOI
2 C. Baudin, R. Martinez, and P. Pena, J. Am. Ceram. Soc. 78, 1857 (1995).   DOI
3 P. Hing, J. Mater. Sci. 11, 1919 (1976).   DOI
4 M. Sherif El-Eskandarany, J. Alloys Comd. 305, 225 (2000).   DOI
5 L. Fu, L. H. Cao, and Y. S. Fan, Scripta Mater. 44, 1061 (2001).   DOI
6 K. Niihara, A. Nikahira, Advanced Structural Inorganic Composite, Elsevier Scientific Publishing Co., Trieste, Italy (1990).
7 S. Berger, R. Porat, and R. Rosen, Progress in Materials 42, 311 (1997).   DOI
8 Z. Fang and J. W. Eason, Int. J. of Refractory Met. & Hard Mater. 13, 297 (1995).   DOI
9 A. I. Y. Tok, L. H. Luo, and F. Y. C. Boey, Mater. Sci. Eng. A 383, 229 (2004).   DOI
10 I. J. Shon, H. J. Wang, C. Y. Suh, S. W. Cho, and W. B. Kim, Korean J. Met. Mater. 49, 374 (2011).
11 F. Charlot, E. Gaffet, B. Zeghmati, F. Bernard, and J. C. Liepce, Mater. Sci. Eng. A 262, 279 (1999).   DOI
12 I. J. Shon, B. R. Kim, J. M. Doh, J. K. Yoon, and K. D. Woo, J. Alloys Compd. 489, L4 (2010).   DOI
13 M. K. Beyer and H. Clausen-Schaumann, Chem. Rev. 105, 2921 (2005).   DOI
14 J. Jung, S. Kang, Scripta Mater. 56, 561 (2007).   DOI
15 S. L. Du, S. H. Cho, I. Y. Ko, J. M. Doh, J. K. Yoon, S. Y. Park, and I. J. Shon, Korean J. Met. Mater. 49, 231 (2011).   DOI
16 H. S. Kang, I. Y. Ko, J. K. Yoon, J. M. Doh, K. T. Hong, and I. J. Shon, Met. Mater. Int. 17, 57 (2011).   DOI
17 J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics 12, 589 (2004).   DOI
18 N. R. Park, I. Y. Ko, J. M. Doh, J. K. Yoon, and I. J. Shon, Journal of Ceramic Processing Research 12, 660 (2011).
19 Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002).   DOI
20 J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004).   DOI
21 J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003).   DOI
22 C. Suryanarayana, M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
23 O. Knacke, O. Kubaschewski, and K. Hesselmann, Thermo Chemical Properties of Inorganic Substances, p.1167, Springer-Verlag, New York (1991).
24 K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).
25 I. J. Shon, S. M. Kwak, J. M. Doh, B. J. Park, J. K. Yoon, Res. Chem. Intermed. (in press).