Browse > Article
http://dx.doi.org/10.1080/12298093.2022.2149927

Molecular and Morphological Characterization of Two Novel Species from Soil and Beetles (Dorcus titanus castanicolor) in Korea  

Vanna Roeun (College of Agriculture and Life Sciences, Kyungpook National University)
Esther (College of Agriculture and Life Sciences, Kyungpook National University)
Kallol Das (College of Agriculture and Life Sciences, Kyungpook National University)
Seung-Yeol Lee (College of Agriculture and Life Sciences, Kyungpook National University)
Hee-Young Jung (College of Agriculture and Life Sciences, Kyungpook National University)
Publication Information
Mycobiology / v.50, no.6, 2022 , pp. 429-438 More about this Journal
Abstract
Two fungal strains belonging to Ascomycota were discovered in Gyeonggi-do, Korea, during this investigation of soil microfungi and microbiota of insects. The strain KNUF-20-047 produced milky white on the back and a milky creamy center to white toward the margin on the front side of colonies. Conversely, the closest Xenoacremonium falcatus displayed a pale luteous to luteous center, white toward margins on the front side, and pale luteous or luteous pigment on the back side, whereas X. recifei produced white colonies. The conidiophores of KNUF-20-047 were slightly larger than those of X. falcatus, and the conidia were distinct from X. recifei. Strain KNUF-20-NI-005 produced light brown to subhyaline conidiophores up to 56.0 lm tall, whereas Rhinocladiella anceps displayed golden to dark brown conidiophores up to 350 lm. Strain KNUF-20-NI-005 also produced larger conidia than R. anceps but smaller than R. coryli and R. fasciculata. Moreover, the molecular phylogeny strongly supports the detailed description and illustration of each proposed species to be designated as Xenoacremonium minutisporum sp. nov. and Rhinocladiella terrigenum sp. nov. in Korea.
Keywords
Morphology; phylogeny; Rhinocladiella terrigenum; Xenoacremonium minutisporum;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Hawksworth DL, Lucking R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr. 2017;5(4):79-95.
2 Lucking R, Aime MC, Robbertse B, et al. Fungal taxonomy and sequence-based nomenclature. Nat Microbiol. 2021;6(5):540-548.
3 Baldrian P, Vetrovsky T, Lepinay C, et al. High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Divers. 2021;19:1-9.
4 Wu B, Hussain M, Zhang W, et al. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology. 2019;10(3):127-140.   DOI
5 Mueller GM, Foster M, Bills GF. Biodiversity of fungi inventory and monitoring methods. San Diego (CA): Elsevier Academic Press; 2004.
6 Perez-Garcia A, Romero D, de Vicente A. Plant protection and growth stimulation by microorganisms: biotechnological applications of bacilli in agriculture. Curr Opin Biotechnol. 2011;22(2):187-193.   DOI
7 Rossman AY, Samuels GJ, Rogerson CT, et al. Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes). Stud Mycol. 1999;42:1-248.
8 Rossman AY. Towards monophyletic genera in the holomorphic hypocreales. Stud Mycol. 2000;45:27-34.
9 Chaverri P, Salgado C, Hirooka Y, et al. Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs. Stud Mycol. 2011;68:57-78.   DOI
10 Grafenhan T, Schroers HJ, Nirenberg HI, et al. An overview of the taxonomy, phylogeny, and typifycation of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella. Stud Mycol. 2011;68:79-113.   DOI
11 Chang DC, Grant GB, O'Donnell K, et al. Multistate outbreak of Fusarium keratitis associated with use of a contact lens solution. JAMA. 2006;296(8):953-963.   DOI
12 Rossman AY. Morphological and molecular perspectives on systematics of the Hypocreales. Mycologia. 1996;88(1):1-19.   DOI
13 Geiser DM, Gueidan C, Miadlikowska J, et al. Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. Mycologia. 2006;98(6):1053-1064.   DOI
14 Wijayawardene NN, Hyde KD, Al-Ani LKT, et al. Outline of fungi and fungus-like taxa. Mycosphere. 2020;11(1):1060-1456.   DOI
15 Munk A. The system of the Pyrenomycetes. Dansk Botanisk Arkiv. 1953;15:1-163.
16 Liu D. Molecular detection of human fungal pathogens. London (UK): Taylor & Francis Group CRC Press; 2011.
17 Arzanlou M, Groenewald JZ, Gams W, et al. Phylogenetic and morphotaxonomic revision of Ramichloridium and allied genera. Stud Mycol. 2007;58:57-93.   DOI
18 Adhikari M, Kim HS, Gurung SK, et al. Two new records of Ascomycetes from crop field soils in Korea. Kor J Mycol. 2017;45:167-174.
19 Park S, Ten L, Lee SY, et al. New recorded species in three genera of the Sordariomycetes in Korea. Mycobiology. 2017;45(2):64-72.   DOI
20 Das K, Kim JH, Choi KS, et al. A new report of Biscogniauxia petrensis isolated from mosquitoes in Korea. Kor J Mycol. 2020;48(2):87-93.
21 Crous PW, Verkley GJM, Groenewald JZ, et al. Fungal biodiversity. CBS laboratory manual series no. 1. Utrecht (The Netherlands): CBS-KNAW Fungal Biodiversity Centre; 2009.
22 Lombard L, van der Merwe NA, Groenewald JZ, et al. Generic concepts in Nectriaceae. Stud Mycol. 2015;80:189-245.
23 Vilgalys R, Hester M. Rapid genetic identification, and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172(8):4238-4246.   DOI
24 White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York (NY): Academic Press, Inc.; 1990. p. 315-322.
25 Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among Ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol. 1999;16(12):1799-1808.   DOI
26 Rehner SA, Samuels GJ. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res. 1994;98(6):625-634.   DOI
27 Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous Ascomycetes. Mycologia. 1999;91(3):553-556.   DOI
28 Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111-120.
29 Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406-425.
30 Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874.   DOI
31 Hughes SJ. Revisiones hyphomycetum aliquot cum appendice de nominibus rejiciendis. Can J Bot. 1958;36(6):727-836.
32 Hernandez-Restrepo M, Schumacher RK, Wingfield MJ, et al. Fungal systematics and evolution: FUSE 2. Sydowia. 2016;68:193-230.
33 Gams W. Cephalosporium-artige schimmelpilze (Hyphomycetes). Int Syst Agric Sci Technol. 1971;48:25-26.
34 Ko WH, Kunimoto RK. Quick decline of macadamia trees: association with Xylaria arbuscula. Plant Pathol. 1991;40(4):643-644.
35 Patel JN, Parmar FA, Upasani VN. Isolation and characterization of pathogens causing disease in pomegranate (Punica granatum L.), India. Int J Innov Res Sci Eng Technol. 2021;10:4403-4408.
36 Dayarathne MC, Jones EBG, Maharachchikumbura SSN, et al. Morpho-molecular characterization of microfungi associated with marine based habitats. Mycosphere. 2020;11(1):1-188.   DOI
37 Mousavi K, Rajabpour A, Parizipour MHG, et al. Biological and molecular characterization of Cladosporium sp. and Acremonium zeylanicum as biocontrol agents of Aphis fabae in a tri-trophic system. Entomologia Exp Applicata. 2022;170(10):877-886.   DOI
38 Patil NB, Mallapur CP, Sujay YH. Efficacy of Acremonium zeylanicum on sugarcane woolly aphid under laboratory conditions. Int J Plant Prot. 2011;4:279-283.
39 Krishna RA, Haseena B, Beena S. First report of Acremonium zeylanicum, Conidiobolus sp. and Neozygites floridana as mycopathogens of two spotted spider mite Tetranychus urticae koch on brinjal in polyhouse. Indian J Fundam Appl Life Sci. 2014;4:230-232.
40 de Hoog GS, Vicente V, Caligiorne RB, et al. Species diversity and polymorphism in the Exophiala spinifera clade containing opportunistic black yeast-like fungi. J Clin Microbiol. 2003;41(10):4767-4778.   DOI
41 Babic MN, Zalar P, Zenko B, et al. Yeasts and yeast-like fungi in tap water and groundwater, and their transmission to household appliances. Fungal Ecol. 2016;20:30-39.
42 Queiroz-Telles F, de Hoog S, Santos DW, et al. Chromoblastomycosis. Clin Microbiol Rev. 2017;30(1):233-276.   DOI
43 Attapattu MC. Chromoblastomycosis a clinical and mycological study of 71 cases from Sri Lanka. Mycopathologia. 1997;137(3):145-151.   DOI
44 Gomes RR, Vicente VA, Azevedo CM, et al. Molecular epidemiology of agents of human chromblastomycosis in Brazil with the description of two novel species. PLoS Negl Trop Dis. 2016;10(11):e0005102.
45 Queiroz-Telles F, Esterre P, Perez-Blanco M, et al. Chromoblastomycosis: an overview of clinical manifestations, diagnosis, and treatment. Med Mycol. 2009;47(1):3-15.
46 Jun JB, Park JY, Kim DW, et al. Chromoblastomycosis caused by Rhinocladiella aquaspersa. Korean J Med Mycol. 2004;9:117-122.
47 Gonzalez GM, Rojas OC, Gonzalez JG, et al. Chromoblastomycosis caused by Rhinocladiella aquaspersa. Med Mycol Case Rep. 2013;2:148-151.   DOI
48 Kanj SS, Amr SS, Roberts GD. Ramichloridium mackenziei brain abscess: report of two cases and review of the literature. Med Mycol. 2001;39(1):97-102.   DOI