Browse > Article
http://dx.doi.org/10.1080/12298093.2022.2123549

Fungal Load of Groundwater Systems in Geographically Segregated Islands: A Step Forward in Fungal Control  

Joong Hee Cho (Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City)
Nam Soo Jun (Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City)
Jong Myong Park (Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City)
Ki In Bang (Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City)
Ji Won Hong (Department of Hydrogen and Renewable Energy, Kyungpook National University)
Publication Information
Mycobiology / v.50, no.5, 2022 , pp. 345-356 More about this Journal
Abstract
The fungal distribution, diversity, and load were analyzed in the geographically segregated island groundwater systems in Korea. A total of 79 fungal isolates were secured from seven islands and identified based on the internal transcribed spacer (ITS) sequences. They belonged to three phyla (Ascomycota, Basidiomycota, and Chlorophyta), five classes, sixteen orders, twenty-two families, and thirty-one genera. The dominant phylum was Ascomycota (91.1%), with most fungi belonging to the Cladosporium (21.5%), Aspergillus (15.2%), and Stachybotrys (8.9%) genera. Cladosporium showed higher dominance and diversity, being widely distributed throughout the geographically segregated groundwater systems. Based on the diversity indices, the genera richness (4.821) and diversity (2.550) were the highest in the groundwater system of the largest scale. As turbidity (0.064-0.462) increased, the overall fungal count increased and the residual chlorine (0.089-0.308) had low relevance compared with the total count and fungal diversity. Cladosporium showed normal mycelial growth in de-chlorinated sterilized samples. Overall, if turbidity increases under higher fungal diversity, bio-deterioration in groundwater-supplying facilities and public health problems could be intensified, regardless of chlorine treatment. In addition to fungal indicators and analyzing methods, physical hydrostatic treatment is necessary for monitoring and controlling fungal contamination.
Keywords
Drinking water safety; fungal diversity; groundwater; water purification;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Andersen B, Frisvad JC, Sondergaard I, et al. Associations between fungal species and water-damaged building materials. Appl Environ Microbiol. 2011;77(12):4180-4188.
2 Page EH, Trout DB. The role of Stachybotrys mycotoxins in building-related illness. AIHAJ. 2001;62(5):644-648.   DOI
3 Chou H, Tam MF, Lee LH, et al. Vacuolar serine protease is a major allergen of Cladosporium cladosporioides. Int Arch Allergy Immunol. 2008;146(4):277-286.   DOI
4 Segura-Medina P, Vargas MH, Aguilar-Romero JM, et al. Mold burden in house dust and its relationship with asthma control. Respir Med. 2019;150:74-80.   DOI
5 Vincent M, Corazza F, Chasseur C, et al. Relationship between mold exposure, specific Ig E sensitization, and clinical asthma: a case-control study. Ann Allergy Asthma Immunol. 2018;121(3):333-339.   DOI
6 Dijksterhuis J. Fungal spores: highly variable and stress-resistant vehicles for distribution and spoilage. Food Microbiol. 2019;81:2-11.   DOI
7 Mafart P, Legu erinel I, Couvert O, et al. Quantification of spore resistance for assessment and optimization of heating processes: a never-ending story. Food Microbiol. 2010;27(5):568-572.   DOI
8 Jaafar M, Marcilla AL, Felipe-Sotelo M, et al. Effect of food preparation using naturally-contaminated groundwater from La Pampa, Argentina: estimation of elemental dietary intake from rice and drinking water. Food Chem. 2018;246:258-265.   DOI
9 Ministry of Environment, Republic of Korea. Test of drinking water. Incheon, Republic of Korea: National Institute of Environmental Research; 2021.
10 Reasoner DJ. Heterotrophic plate count methodology in the United States. Int J Food Microbiol. 2004;92(3):307-315.
11 White TJ, Bruns TD, Lee SB, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In MA Innis, DH Gelfand and JJ Sninsky (Eds.). PCR protocols: a guide to methods and applications. San Diego, USA: Academic Press; 1990. p. 315-322.
12 Chen Y, Ye W, Zhang Y, et al. High speed BLASTn: an accelerated mega BLAST search tool. Nucleic Acids Res. 2015;43(16):7762-7768.   DOI
13 Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547-1549.   DOI
14 Aiyar A. The use of Clustal W and Clustal X for multiple sequence alignment. Methods Mol Biol. 2000;132:221-241.
15 Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947-2948.   DOI
16 Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol. 1992;9:945-967.
17 Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783-791.   DOI
18 Tajima F, Nei M. Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol. 1984;1:269-285.
19 Nei M, Kumar S. Molecular evolution and phylogenetics (32-33). New York, USA: Oxford University Press; 2000.
20 Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406-425.
21 Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA. 2006;103(3):626-631.   DOI
22 Margalef R. Information theory in ecology. Int J Gen Syst. 1958;3:36-71.
23 Mendes RS, Evangelista LR, Thomaz SM, et al. A unified index to measure ecological diversity and species rarity. Ecography. 2008;31(4):450-456.   DOI
24 Whittaker RH. Evolution of species diversity in land communities. Evol Biol. 1972;10:1-67.
25 Marcon E, Scotti I, H erault B, et al. Generalization of the partitioning of Shannon diversity. PLOS One. 2014;9(3):e90289.
26 Lambshead PJD, Platt HM, Shaw KM. The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J Nat Hist. 1983;17(6):859-874.   DOI
27 Baird RB, Eaton AD, Rice EW. Standard methods for the examination of water & wastewater (21st ed), 4500-Cl G. DPD colorimetric method (4-110,112). Washington, DC: American Public Health Association, American Water Works Association; 2005.
28 ISO technical committee. General requirements for the competence of testing and calibration laboratories. (3rd ed). Washington DC: American National Standards Institute; 2017.
29 Li P, Yoshimura T, Furuta T, et al. Sunlight caused interference in outdoor N, N-diethyl-p-phenylenediamine colorimetric measurement for residual chlorine and the solution for on-site work. Ecotoxicol Environ Saf. 2019;169:640-644.   DOI
30 Baird RB, Eaton AD, Rice EW. Standard methods for the examination of water & wastewater (21st ed), 2130-B. Nephelometric method (2-9,11). Washington, DC: American Public Health Association, American Water Works Association; 2005.
31 Fukuda K, Ogawa M, Taniguchi H, et al. Molecular approaches to studying microbial communities: targeting the 16S ribosomal RNA gene. J Uoeh. 2016;38(3):223-232.   DOI
32 Chowdhury S. Heterotrophic bacteria in drinking water distribution system: a review. Environ Monit Assess. 2012;184(10):6087-6137.
33 Deshmukh SK, Rai MK. Biodiversity of fungi: their role in human life 460. Enfield, NH, USA: Science Publishers; 2005.
34 Ministry of Environment, Republic of Korea. Water supply and waterworks installation act (act no. 17326). Sejong City, Republic of Korea: Korea Ministry of Government Legislation; 2000.
35 Institut National de Sante Publique du Quebec. Cladosporium cladosporioides. Gouvernement du Quebec. Quebec, Canada: Institut national de sante publique Quebec; 2022. Available from: https://www.inspq.qc.ca/node/488.
36 Flannigan B, Samson RA, Miller JD. Microorganisms in home and indoor work environments: diversity, health impacts, investigation and control. (2nd ed), Boca Raton, FL: CRC Press; 2011.
37 Sandoval-Denis M, Gen e J, Sutton DA, et al. New species of Cladosporium associated with human and animal infections. Persoonia. 2016;36:281-298.   DOI
38 Etzel RA, Montana E, Sorenson WG, et al. Acute pulmonary hemorrhage in infants associated with exposure to Stachybotrys atra and other fungi. Arch Pediatr Adolesc Med. 1998;152(8):757-762.   DOI
39 Pestka JJ, Yike I, Dearborn DG, et al. Stachybotrys chartarum, trichothecene mycotoxins, and damp building-related illness: new insights into a public health enigma. Toxicol Sci. 2008;104(1):4-26.   DOI
40 Croston TL, Lemons AR, Barnes MA, et al. Inhalation of Stachybotrys chartarum fragments induces pulmonary arterial remodeling. Am J Respir Cell Mol Biol. 2020;62(5):563-576.   DOI
41 Kuhn DM, Ghannoum MA. Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective. Clin Microbiol Rev. 2003;16(1):144-172.   DOI
42 Bitnun A, Nosal RM. Stachybotrys chartarum (atra) contamination of the indoor environment: health implications. Paediatr Child Health. 1999;4(2):125-129.   DOI
43 Ingavat N, Mahidol C, Ruchirawat S, et al. Asperaculin A, a sesquiterpenoid from a marine-derived fungus, Aspergillus aculeatus. J Nat Prod. 2011;74(7):1650-1652.   DOI
44 Ding Y, Zhu X, Hao L, et al. Bioactive iidolyl diketopiperazines from the marine derived endophytic Aspergillus versicolor DY180635. Mar. Drugs. 2020;18(7):338.
45 Gonzalez-Abradelo D, P erez-Llano Y, Peidro-Guzman H, et al. First demonstration that ascomycetous halophilic fungi (Aspergillus sydowii and Aspergillus destruens) are useful in xenobiotic mycoremediation under high salinity conditions. Bioresour Technol. 2019;279:287-296.   DOI
46 Hayashi A, Crombie A, Lacey E, et al. Aspergillus sydowii marine fungal bloom in Australian coastal waters, its metabolites and potential impact on Symbiodinium dinoflagellates. Mar Drugs. 2016;14(3):59.
47 Li XD, Li X, Li XM, et al. Antimicrobial bisabolane-type sesquiterpenoids from the deep-sea sediment-derived fungus Aspergillus versicolor SD-330. Nat Prod Res. 2021;35(22):4265-4271.   DOI
48 Niu S, Chen Z, Pei S, et al. Acremolin D, a new acremolin alkaloid from the deep-sea sediment derived Aspergillus sydowii fungus. Nat Prod Res. 2021;12:1-7.
49 Andersen B, Dosen I, Lewinska AM, et al. Pre-contamination of new gypsum wallboard with potentially harmful fungal species. Indoor Air. 2017;27(1):6-12.   DOI
50 Berni E, Tranquillini R, Scaramuzza N, et al. Aspergilli with Neosartorya-type ascospores: heat resistance and effect of sugar concentration on growth and spoilage incidence in berry products. Int J Food Microbiol. 2017;258:81-88.   DOI
51 Scaramuzza N, Mutti P, Cigarini M, et al. Effect of peracetic acid on ascospore-forming molds and test microorganisms used for bio-validations of sanitizing processes in food plants. Int J Food Microbiol. 2020;332:108772.
52 Tuthill RW, Giusti RA, Moore GS, et al. Health effects among newborns after prenatal exposure to ClO2-disinfected drinking water. Environ Health Perspect. 1982;46:39-45.
53 Andrews S, Pardoel D, Harun A, et al. Chlorine inactivation of fungal spores on cereal grains. Int J Food Microbiol. 1997;35(2):153-162.   DOI
54 Couri D, Abdel-Rahman MS, Bull RJ. Toxicological effects of chlorine dioxide, chlorite and chlorate. Environ Health Perspect. 1982;46:13-17.   DOI
55 Jin M, Liu L, Wang DN, et al. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. Isme J. 2020;14(7):1847-1856.   DOI
56 Wen G, Xu X, Huang T, et al. Inactivation of three genera of dominant fungal spores in groundwater using chlorine dioxide: effectiveness, influencing factors, and mechanisms. Water Res. 2017;125:132-140.   DOI
57 Lora AR, Douglas B. HACCP and sanitation in restaurants and food service operations. A practical guide based on the FDA food code. Ocala, Florida, USA: Atlantic Publishing Group Inc; 2005.
58 Visconti V, Rigalma K, Coton E, et al. Impact of the physiological state of fungal spores on their inactivation by active chlorine and hydrogen peroxide. Food Microbiol. 2021;100:103850.
59 Srivastav AL, Patel N, Chaudhary VK. Disinfection by-products in drinking water: occurrence, toxicity and abatement. Environ Pollut. 2020;267:115474.
60 Wijayawardene NN, Hyde KD, Dai DQ, et al. Outline of fungi and fungus-like taxa - 2021. Mycosphere. 2022;13(1):53-453.   DOI
61 Ministry of Environment, Republic of Korea. Drinking water management act (act no. 16079). Sejong City, Republic of Korea: Korea Ministry of Government Legislation; 2018.
62 Alvarez-Barragan J, Dominguez-Malfavon L, Vargas-Suarez M, et al. Biodegradative activities of selected environmental fungi on a polyester polyurethane varnish and polyether polyurethane foams. Appl Environ Microbiol. 2016;82(17):5225-5235.   DOI
63 Jing M, Huang B, Li W, et al. Biocontrol of Cladosporium cladosporioides of mango fruit with Bacillus atrophaeus TE7 and effects on storage quality. Curr Microbiol. 2021;78(2):765-774.   DOI
64 Park JM, Kim JM, Hong JW, et al. Introduction of highly effective proactive food safety management programs into food distribution channels: for safe food labeling and safe advertisements. J Food Saf. 2020;40(2):e12751.
65 Park JM, Lee AR, Hong JW, et al. Microbial risks in food franchise: a step forward in establishing ideal cleaning and disinfection practices in SSOPs. J Food Saf. 2019;39(2):e12606.
66 Brunner I, Fischer M, Ruthi J, et al. Ability of € fungi isolated from plastic debris floating in the shoreline of a lake to degrade plastics. PLOS One. 2018;13(8):e0202047.
67 Progovitz RF. Black mold your health and your home 96. New York, USA: The Forager Press, LLC. 2003.
68 Chen S, Liu C, Peng C, et al. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLOS One. 2012;7(10):e47205.
69 Hong JY, Kim YH, Jung MH, et al. Characterization of xylanase of Cladosporium cladosporioides H1 isolated from Janggyeong Panjeon in Haeinsa Temple. Mycobiology. 2011;39(4):306-309.   DOI
70 Kwa sna H, Kuberka A. Fungi in public heritage buildings in Poland. Pol J Environ Stud. 2020;29(5):3651-3662.   DOI
71 Andersen B, Nielsen KF, Thrane U, et al. Molecular and phenotypic descriptions of Stachybotrys chlorohalonata sp. nov. and two chemotypes of Stachybotrys chartarum found in water-damaged buildings. Mycologia. 2003;95(6):1227-1238.   DOI