Browse > Article
http://dx.doi.org/10.1080/12298093.2022.2035906

Comprehensive Transcriptomic Analysis of Cordyceps militaris Cultivated on Germinated Soybeans  

Yoo, Chang-Hyuk (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
Sadat, Md. Abu (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
Kim, Wonjae (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
Park, Tae-Sik (Department of Life Science, Gacheon University)
Park, Dong Ki (Cell Activation Research Institute)
Choi, Jaehyuk (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
Publication Information
Mycobiology / v.50, no.1, 2022 , pp. 1-11 More about this Journal
Abstract
The ascomycete fungus Cordyceps militaris infects lepidopteran larvae and pupae and forms characteristic fruiting bodies. Owing to its immune-enhancing effects, the fungus has been used as a medicine. For industrial application, this fungus can be grown on geminated soybeans as an alternative protein source. In our study, we performed a comprehensive transcriptomic analysis to identify core gene sets during C. militaris cultivation on germinated soybeans. RNA-Seq technology was applied to the fungal cultures at seven-time points (2, 4, and 7-day and 2, 3, 5, 7-week old cultures) to investigate the global transcriptomic change. We conducted a time-series analysis using a two-step regression strategy and chose 1460 significant genes and assigned them into five clusters. Characterization of each cluster based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases revealed that transcription profiles changed after two weeks of incubation. Gene mapping of cordycepin biosynthesis and isoflavone modification pathways also confirmed that gene expression in the early stage of GSC cultivation is important for these metabolic pathways. Our transcriptomic analysis and selected genes provided a comprehensive molecular basis for the cultivation of C. militaris on germinated soybeans.
Keywords
Cordyceps militaris; RNA-seq; germinated soybeans; bioinformatics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zhong J-J, Xiao J-H. Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction. In: Zhong J-J, Bai F-W, Zhang W, editors. Biotechnology in China I. Switzerland: Springer; 2009. p. 79-150.
2 Kim HG, Shrestha B, Lim SY, et al. Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-κB through Akt and p38 inhibition in RAW 264.7 macrophage cells. Eur J Pharmacol. 2006;545(2-3):192-199.   DOI
3 Choi E, Oh J, Sung G-H. Antithrombotic and antiplatelet effects of Cordyceps militaris. Mycobiology. 2020;48(3):228-232.   DOI
4 Nasser MI, Masood M, Wei W, et al. Cordycepin induces apoptosis in SGC-7901 cells through mitochondrial extrinsic phosphorylation of PI3K/akt by generating ROS. Int J Oncol. 2017;50(3):911-919.   DOI
5 Vongsangnak W, Raethong N, Mujchariyakul W, et al. Genome-scale metabolic network of Cordyceps militaris useful for comparative analysis of entomopathogenic fungi. Gene. 2017;626:132-139.   DOI
6 Xia Y, Luo F, Shang Y, et al. Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chem Biol. 2017;24(12):1479-1489.   DOI
7 Yin J, Xin XD, Weng YJ, et al. Transcriptome-wide analysis reveals the progress of Cordyceps militaris subculture degeneration. PLOS One. 2017;12(10):e0186279.   DOI
8 Choi JN, Kim J, Lee MY, et al. Metabolomics revealed novel isoflavones and optimal cultivation time of Cordyceps militaris fermentation. J Agric Food Chem. 2010;58(7):4258-4267.   DOI
9 Lee J, Doo EH, Kwon DY, et al. Functionalization of isoflavones with enzymes. Food Sci Biotechnol. 2008;17:228-233.
10 Qin P, Li X, Yang H, et al. Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing fungi. Molecules. 2019;24(12):2231.   DOI
11 Lin S, Liu Z-Q, Xue Y-P, et al. Biosynthetic pathway analysis for improving the cordycepin and cordycepic acid production in Hirsutella sinensis. Appl Biochem Biotechnol. 2016;179(4):633-649.   DOI
12 Shao LW, Huang LH, Yan S, et al. Cordycepin induces apoptosis in human liver cancer HepG2 cells through extrinsic and intrinsic signaling pathways. Oncol Lett. 2016;12(2):995-1000.   DOI
13 Zheng P, Xia Y, Xiao G, et al. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol. 2011;12(11):R116.   DOI
14 Chen B-X, Wei T, Xue L-N, et al. Transcriptome analysis reveals the flexibility of cordycepin network in Cordyceps militaris activated by l-alanine addition. Front Microbiol . 2020;11:577.   DOI
15 Oh JY, Choi W-S, Lee CH, et al. The ethyl acetate extract of Cordyceps militaris inhibits IgE-mediated allergic responses in mast cells and passive cutaneous anaphylaxis reaction in mice. J Ethnopharmacol. 2011;135(2):422-429.   DOI
16 Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.   DOI
17 Ko KP. Isoflavones: Chemistry, analysis, functions and effects on health and cancer. Asian Pac J Cancer Prev. 2014;15(17):7001-7010.   DOI
18 Noh E-M, Jung SH, Han J-H, et al. Cordycepin inhibits TPA-induced matrix metalloproteinase-9 expression by suppressing the MAPK/AP-1 pathway in MCF-7 human breast cancer cells. Int J Mol Med. 2010;25:255-260.
19 Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357-360.   DOI
20 Yin Y, Yu G, Chen Y, et al. Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militaris. PLOS One. 2012;7(12):e51853.   DOI
21 Ohta Y, Lee J-B, Hayashi K, et al. In vivo anti-influenza virus activity of an immunomodulatory acidic polysaccharide isolated from Cordyceps militaris grown on germinated soybeans. J Agric Food Chem. 2007;55(25):10194-10199.   DOI
22 Guadamuro L, Florez AB, Alegria A, et al. Characterization of four β-glucosidases acting on isoflavone-glycosides from Bifidobacterium pseudocatenulatum IPLA 36007. Food Res Int. 2017;100(Pt 1):522-528.   DOI
23 Kim DH, Kim BG, Lee Y, et al. Regiospecific methylation of naringenin to ponciretin by soybean O-methyltransferase expressed in Escherichia coli. J Biotechnol. 2005;119(2):155-162.   DOI
24 Raethong N, Laoteng K, Vongsangnak W. Uncovering global metabolic response to cordycepin production in Cordyceps militaris through transcriptome and genome-scale network-driven analysis. Sci Rep. 2018;8(1):1-13.
25 Xia F, Liu Y, Shen G-R, et al. Investigation and analysis of microbiological communities in natural Ophiocordyceps sinensis. Can J Microbiol. 2015;61(2):104-111.   DOI
26 Liu Z-Q, Lin S, Baker PJ, et al. Transcriptome sequencing and analysis of the entomopathogenic fungus Hirsutella sinensis isolated from Ophiocordyceps sinensis. BMC Genomics. 2015;16:106.   DOI
27 Park DK, Park H-J. Ethanol extract of Cordyceps militaris grown on germinated soybeans attenuates dextran-sodium-sulfate-(DSS-) induced colitis by suppressing the expression of matrix metalloproteinases and inflammatory mediators. Biomed Res Int. 2013;2013:10928.
28 Assefa AT, Vandesompele J, Thas O. On the utility of RNA sample pooling to optimize cost and statistical power in RNA sequencing experiments. BMC Genomics. 2020;21(1):312.   DOI
29 Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80.   DOI
30 Tian X, Li Y, Shen Y, et al. Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin. Oncol Lett. 2015;10(2):595-599.   DOI
31 Nueda MJ, Tarazona S, Conesa A. Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series. Bioinformatics. 2014;30(18):2598-2602.   DOI
32 Suparmin A, Kato T, Dohra H, et al. Insight into cordycepin biosynthesis of Cordyceps militaris: comparison between a liquid surface culture and a submerged culture through transcriptomic analysis. PLOS One. 2017;12(11):e0187052.   DOI
33 Choi EJ, Kim GH. The antioxidant activity of daidzein metabolites, O-desmethylangolensin and equol, in HepG2 cells. Mol Med Rep. 2014;9(1):328-332.   DOI
34 Ververidis F, Trantas E, Douglas C, et al. Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: chemical diversity, impacts on plant biology and human health. Biotechnol J. 2007;2(10):1214-1234.   DOI
35 Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841-842.   DOI
36 JeRdrejko KJ, Lazur J, Muszynska B. Cordyceps militaris: an overview of its chemical constituents in relation to biological activity. Foods. 2021;10(11):2634.   DOI
37 Sung G-H, Hywel-Jones NL, Sung J-M, et al. Phylogenetic classification of Cordyceps and the Clavicipitaceous fungi. Stud Mycol. 2007;57:5-59.   DOI
38 Paterson RRM. Cordyceps - a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry. 2008;69(7):1469-1495.   DOI