Browse > Article
http://dx.doi.org/10.1080/12298093.2020.1745476

Morphology and Molecular Characterization of a Fungus from the Alternaria alternata Species Complex Causing Black Spots on Pyrus sinkiangensis (Koerle pear)  

Aung, Sein Lai Lai (Department of Plant Protection, College of Agriculture, Yangtze University)
Liu, Hai Feng (Department of Plant Protection, College of Agriculture, Yangtze University)
Pei, Dong Fang (Department of Plant Protection, College of Agriculture, Yangtze University)
Lu, Bing Bin (General Station of Plant Protection of Hubei Province)
Oo, May Moe (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
Deng, Jian Xin (Department of Plant Protection, College of Agriculture, Yangtze University)
Publication Information
Mycobiology / v.48, no.3, 2020 , pp. 233-239 More about this Journal
Abstract
A small-spored Alternaria was found from black spots of storaged Koerle pear (Pyrus sinkiangensis), one of the economically important fruit in Xinjiang province, China. The morphology is similar to A. limoniasperae but obviously different in secondary conidiophores and conidial septa. A phylogenetic analysis using sequence datasets of ITS, GAPDH, TEF1, RPB2, Alt a1, OPA10-2, and EndoPG genes revealed that it belonged to the Alternaria alternata complex group. Pathogenicity tests illustrated that the fungus was the causal pathogen of black spot on Koerle pear fruit.
Keywords
Alternaria; black spot disease; phylogenetic analysis; pathogenicity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Cenis JL. Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res. 1992;20(9):2380-2380.   DOI
2 White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 315-322.
3 Berbee ML, Pirseyedi M, Hubbard S. Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia. 1999;91(6):964-977.   DOI
4 Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91(3):553-556.   DOI
5 Sung G-H, Sung J-M, Hywel-Jones NL, et al. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Mol Phylogen Evol. 2007;44(3):1204-1223.   DOI
6 ISBN, AQSIQ. Import risk analysis: Pears (Pyrus bretschneideri, Pyrus pyrifolia, and Pyrus sp. nr. communis) fresh fruit from China (Final version), Policy and Risk, MAF Biosecurity New Zealand; 2009.
7 Qi X, Wu J, Wang L, et al. Identifying the candidate genes involved in the calyx abscission process of 'Kuerlexiangli' (Pyrus sinkiangensis Yu) by digital transcript abundance measurements. BMC Genomics. 2013;14(1):727.   DOI
8 Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725-2729.   DOI
9 Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA Polymerse II Subunit. Mol Biol Evol. 1999;16(12):1799-1808.   DOI
10 Hong SG, Cramer RA, Lawrence CB, et al. Alt a 1 allergen homologs from Alternaria and related taxa: analysis of phylogenetic content and secondary structure. Fungal Genet Biol. 2005;42(2):119-129.   DOI
11 Nylander J. MrModeltest v2. Program distributed by the author. Uppsala, Sweden: Evolutionary Biology Centre, Uppsala University; 2004.
12 Ronquist F, Huelsenbeck JP. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12):1572-1574.   DOI
13 Andrew M, Peever TL, Pryor BM. An expanded multilocus phylogeny does not resolve morphological species within the small-spored Alternaria species complex. Mycologia. 2009;101(1):95-109.   DOI
14 Song B, Zhu XF, Xu BQ, et al. Identification of Koerle pear calyx-end black spot pathogen and its sequence analysis of ITS, GPD and EF-1a. Acta Hortic Sin. 2016;43(2):329-336.
15 Pavon MM, Gonzalez AI, Martin de Santos R, et al. The importance of genus Alternaria in mycotoxins production and human diseases. Nutr Hosp. 2012;27:1772-1981.
16 Polizzotto R, Andersen B, Martini M, et al. A polyphasic approach for the characterization of endophytic Alternaria strains isolated from grapevines. J Microbiol Methods. 2012;88(1):162-171.   DOI
17 Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688-2690.   DOI
18 Rambaut A, Drummond A. FigTree v.1.3.1. Institute of evolutionary biology. Edinburgh, UK: University of Edinburgh; 2010.
19 Neergaard P. Danish species of Alternaria and Stemphylium: taxonomy, parasitism, economical significance. Copenhagen: Einar Munksgard; 1945.
20 Simmons EG. Alternaria: an identification manual, CBS biodiversity series 6. Utrecht: Centraalbureau voor Schimmelcultures; 2007.
21 Lawrence DP, Rotondo F, Gannibal PB. Biodiversity and taxonomy of the pleomorphic genus Alternaria. Mycol Progress. 2016;15(1):3.   DOI
22 Woudenberg JHC, Seidl MF, Groenewald JZ, et al. Alternaria section Alternaria: species, formae speciales or pathotypes? Stud Mycol. 2015;82:1-21.   DOI
23 Gannibal PB. Distribution of Alternaria species among sections.2. Section Alternaria. Mycotaxon. 2016;130(4):941-949.   DOI
24 Luo H, Xia ZZ, Chen YY, et al. Morphology and molecular characterization of Alternaria argyranthemi on Chrysanthemum coronarium in China. Mycobiology. 2018;46(3):278-282.   DOI
25 Rayner RW. A mycological colour chart. London: Commonwealth Mycological Institute (Kew); 1970.