Browse > Article
http://dx.doi.org/10.1080/12298093.2018.1514732

Discovery of Two Chrysosporium Species with Keratinolytic Activity from Field Soil in Korea  

Gurung, Sun Kumar (Division of Biological Resource Science, Kangwon National University)
Adhikari, Mahesh (Division of Biological Resource Science, Kangwon National University)
Kim, Sang Woo (Division of Biological Resource Science, Kangwon National University)
Bazie, Setu (Division of Biological Resource Science, Kangwon National University)
Kim, Hyun Seung (Division of Biological Resource Science, Kangwon National University)
Lee, Hyun Goo (Division of Biological Resource Science, Kangwon National University)
Kosol, San (Division of Biological Resource Science, Kangwon National University)
Lee, Hyang Burm (Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University)
Lee, Youn Su (Division of Biological Resource Science, Kangwon National University)
Publication Information
Mycobiology / v.46, no.3, 2018 , pp. 260-268 More about this Journal
Abstract
In an ongoing survey of Korean indigenous fungi, two fungal strains (KNU16-74 and KNU16-99) belonging to the genus Chrysosporium were isolated from field soil in Gyeongnam, Korea. Morphological characterization and phylogenetic analysis using sequence of the internal transcribed spacer regions were carried out to confirm its precise identification. These strains were identified as Chrysosporium indicum (KNU16-74) and Chrysosporium fluviale (KNU16-99). To examine the keratin degradation efficiency of these two fungal species, human hair strands were incubated with fungus culture. Results revealed that these two fungal species have the ability to degrade keratin substrate. This is the first report of these two species in Korea.
Keywords
Chrysosporium fluviale; Chrysosporium indicum; keratin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Oorschot CAN Van. A revision of Chrysosporium and allied genera. Stud Mycol. 1980;20:1-89.
2 Hughes SJ. Revisiones hyphmycetum aliquot cum appendice de nominibus rejiciendis. Can J Bot. 1958;36:727-836.   DOI
3 Kornillowicz T. Occurrence of geophilic keratinophilic fungi in bottom sediments of various trophicity. Acta Mycol. 2014;28:171-184.   DOI
4 Ulfig K, Guarro J, Cano J, et al. The occurrence of keratinolytic fungi in sediments of the river Tordera. FEMS Microbiol Ecol. 2006;22:111-117.   DOI
5 Currah RS. Taxonomy of the Onygenales: Arthodermataceae, Gymnoascaceae, Myxotrichaceae and Onygenaceae. Mycotaxon. 1985;24:1-216.
6 Hubalek Z. Keratinophilic fungi associated with free-living mammals and birds. In: Kushwaha RKS, Guarro J, editors. Biology of dermatophytes and other keratinophilic fungi. Bilbao, Spain: Revista Iberoamericana de Micologia; 2000. p. 93-103.
7 Mandeel Q, Nardoni S, Mancianti F. Keratinophilic fungi on feathers of common clinically healthy birds in Bahrain. Mycoses. 2011;54:71-77.   DOI
8 Sigler L, Carmichael JW. Taxonomy of Malbranchea and some other hyphomycetes with arthroconidia. Mycotaxon. 1976;4:349-488.
9 Carmichael JW. Chrysosporium and some other aleuriosporic hyphomycetes. Can J Bot . 1962;40:1137-1173.   DOI
10 Zhang Y, Chen WH, Zeng G, et al. Two new Chrysosporium (Onygenaceae, Onygenales) from China. Phytotaxa. 2016;270:210-216.   DOI
11 Mitola G, Escalona F, Salas R, et al. Morphological characterization of in-vitro human hair keratinolysis, produced by identified wild strains of Chrysosporium species. Mycopathologia. 2002;156:163-169.
12 Desmukh SK, Verekar SA. Isolation of keratinophilic fungi from selected soils of Sanjay Gandhi National Park, Mumbai (India). J Mycol Med. 2014;24:318-327.
13 Liang JD, Han YF, Liang ZQ. A study and application progress in a group of keratinophilic fungi, the genus Chrysosporium. J Fungal Res. 2007;5:113-118.
14 Liu B, Zhang J, Li B, et al. Expression and characterization of extreme alkaline, oxidation-resistant keratinase from Bacillus lincheniformis in recombinant Bacillus subtilis WB600 expression system and its application in wool fiber processing. World J Microbiol Biotechnol. 2013;29:825-832.   DOI
15 Silva LAD, Macedo AJ, Termignoni C. Production of keratinase by Bacillus subtilis S14. Ann Microbiol. 2014;64:1725-1733.   DOI
16 Yang F, Zhang Y, Rheinstadter MC. The structure of people's hair. Peer J. 2014;2:e619.   DOI
17 Deshmukh SK, Agrawal SC. In vitro degradation of human hair by some keratinophilic fungi. Mykosen. 1982;25:454-458.
18 Apinis AE. Relationships of certain keratinophilic Plectascales. Mycopathol Mycol Appl. 1968;35:97-104.   DOI
19 Kushwaha RKS. The genus Chrysosporium, its physiology and biotechnological potential. In: Kushwaha RKS, Guarro J, editors. Biology of dermatophytes and other keratinophilic fungi. Bilbao, Spain: Revista Iberoamericana de Micologia; 2000. p. 66-76.
20 Hong SJ, Park GS, Jung BK, et al. Isolation, identification, and characterization of a keratin-degrading bacterium Chryseobacterium sp. P1-3. J Appl Biol Chem. 2015;58:247-251.   DOI
21 Blyskal B. Fungi utilizing keratinous substrates. Int Biodeterior Biodegradation. 2009;63:631-653.   DOI
22 Maruthi AY, Lakshimi AK, Rao RS, et al. Degradation of feather and hair by Chrysosporium tropicum: a potent keratinophilic fungus. African J Biotechnol. 2011;10:3579-3584.
23 Samson RA, Houbraken J, Thrane U, et al. Food and indoor fungi. Webmaster Laboratory Manual Series. Utrecht: CBS-KNAW Fungal Diversity Center; 2010.
24 Nwadiaro PO, Chuku Onyimba IA, et al. Keratin degradation by Penicillium purpurogenum isolated from Tannery soil in Jos, Nigeria. BMRJ. 2015;8:358-366.   DOI
25 Lange L, Huang Y, Busk PK. Microbial decomposition of keratin in nature-a new hypothesis of industrial relevance. Appl Microbiol Biotechnol. 2016;100:2083-2096.   DOI
26 Davet P, Rouxel F. Detection and isolation of soil fungi. Enfield, USA: Science Publishers; 2000.
27 Kornerup A, Wanscher JH. Methuen handbook of colour. 3rd ed. London: Eyre Methuen; 1978.
28 White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al. editor. PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315-322.
29 Tamura K, Stecher G, Peterson D, Filipski A, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725-2729.   DOI
30 Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111-120.   DOI
31 Mariana C, Constantinescu AD, Alexandrescu E, et al. Degradation of keratin substrate by keratinolytic fungi. Electron J Biotechnol. 2017;28:101-112.   DOI
32 Kornillowicz T. Methods for determining keratinoytic activity of saprophytic fungi. Acta Mycol. 2014;29:169-178.   DOI
33 Vidal P, Sanchez JM, Milan D, et al. Chrysosporium fluviale, a new keratinophilic species from river sediments. Mycol Res. 2000;104:244-250.   DOI
34 Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265-275.
35 Chester CGC, Mathison GE. The decomposition of wool keratin by Keratinomyces ajelloi. Med Mycol. 1963;2:225-237.   DOI
36 Garg AK. Isolation of dermatophytes and other keratinophilic fungi from soil in India. Sabouraudia. 1966;4:259-264.   DOI
37 Kiss L. Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for Fungi. Proc Natl Acad Sci USA. 2012;109:E1811.   DOI
38 Liang J, Han Y, Du W, et al. Chrysosporium linfenense: a new Chrysosporium species with keratinolytic activity. Mycotaxon. 2009;110:65-71.   DOI
39 Vidal P, Valmaseda M, Vinuesa MA, et al. Two new species of Chrysosporium. Stud Mycol. 2002;47:199-209.
40 Labuda R, Nadova L, Tomas VEN. First record of Chrysosporium europae, Ch. fluviale and Ch. minutisporosum in Slovakia. Biologia. 2008;63:38-39.