Browse > Article
http://dx.doi.org/10.1080/12298093.2018.1468053

Mon1 Is Essential for Fungal Virulence and Stress Survival in Cryptococcus neoformans  

Son, Ye-Eun (School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University)
Jung, Won-Hee (School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University)
Oh, Sang-Hun (School of Life Science, Handong Global University)
Kwak, Jin-Hwan (School of Life Science, Handong Global University)
Cardenas, Maria E. (Department of Molecular Genetics and Microbiology, Duke University Medical Center)
Park, Hee-Soo (School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University)
Publication Information
Mycobiology / v.46, no.2, 2018 , pp. 114-121 More about this Journal
Abstract
Mon1 is a guanine nucleotide exchange factor subunit that activates the Ypt7 Rab GTPase and is essential for vacuole trafficking and autophagy in eukaryotic organisms. Here, we identified and characterized the function of Mon1, an ortholog of Saccharomyces cerevisiae Mon1, in a human fungal pathogen, Cryptococcus neoformans. Mutation in mon1 resulted in hypersensitivity to thermal stress. The mon1 deletion mutant exhibited increased sensitivity to cell wall and endoplasmic reticulum stress. However, the mon1 deletion mutant showed more resistance to the antifungal agent fluconazole. In vivo studies demonstrated that compared to the wild-type strain, the mon1 deletion mutant attenuated virulence in the Galleria mellonella insect model. Moreover, the mon1 deletion mutant was avirulent in the murine inhalation model. These results demonstrate that Mon1 plays a crucial role in stress survival and pathogenicity in C. neoformans.
Keywords
Cryptococcus neoformans; Mon1; virulence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kojima K, Bahn YS, Heitman J. Calcineurin, Mpk1 and Hog1 MAPK pathways independently control fludioxonil antifungal sensitivity in Cryptococcus neoformans. Microbiology. 2006;152:591-604.   DOI
2 Klionsky DJ, Herman PK, Emr SD. The fungal vacuole: composition, function, and biogenesis. Microbiol Rev. 1990;54:266-292.
3 Yamasaki A, Noda NN. Structural biology of the Cvt pathway. J Mol Biol. 2017;429:531-542.   DOI
4 Teter SA, Klionsky DJ. Transport of proteins to the yeast vacuole: autophagy, cytoplasm-to-vacuole targeting, and role of the vacuole in degradation. Semin Cell Dev Biol. 2000;11:173-179.   DOI
5 Lynch-Day MA, Klionsky DJ. The Cvt pathway as a model for selective autophagy. FEBS Lett. 2010;584:1359-1366.   DOI
6 Sato K, Wickner W. Functional reconstitution of ypt7p GTPase and a purified vacuole SNARE complex. Science. 1998;281:700-702.   DOI
7 Cabrera M, Nordmann M, Perz A, et al. The Mon1-Ccz1 GEF activates the Rab7 GTPase Ypt7 via a longin-fold-Rab interface and association with PI3P-positive membranes. J Cell Sci. 2014;127:1043-1051.   DOI
8 Cabrera M, Ungermann C. Guanine nucleotide exchange factors (GEFs) have a critical but not exclusive role in organelle localization of Rab GTPases. J Biol Chem. 2013;288:28704-28712.   DOI
9 Kiontke S, Langemeyer L, Kuhlee A, et al. Architecture and mechanism of the late endosomal Rab7-like Ypt7 guanine nucleotide exchange factor complex Mon1-Ccz1. Nat Commun. 2017;8:14034.   DOI
10 Nickel W, Brugger B, Wieland FT. Vesicular transport:the core machinery of COPI recruitment and budding. J Cell Sci. 2002;115:3235-3240.
11 Gao HM, Liu XG, Shi HB, et al. MoMon1 is required for vacuolar assembly, conidiogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae. Res Microbiol. 2013;164:300-309.   DOI
12 Li Y, Li B, Liu L, et al. FgMon1, a guanine nucleotide exchange factor of FgRab7, is important for vacuole fusion, autophagy and plant infection in Fusarium graminearum. Sci Rep. 2015;5:18101.
13 Polupanov AS, Nazarko VY, Sibirny AA. CCZ1, MON1 and YPT7 genes are involved in pexophagy, the Cvt pathway and non-specific macroautophagy in the methylotrophic yeast Pichia pastoris. Cell Biol Int. 2011;35:311-319.   DOI
14 Liu XH, Gao HM, Xu F, et al. Autophagy vitalizes the pathogenicity of pathogenic fungi. Autophagy. 2012;8:1415-1425.   DOI
15 Loftus BJ, Fung E, Roncaglia P, et al. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science. 2005;307:1321-1324.   DOI
16 Bouklas T, Fries BC. Cryptococcus neoformans constitutes an ideal model organism to unravel the contribution of cellular aging to the virulence of chronic infections. Curr Opin Microbiol. 2013;16:391-397.   DOI
17 Park H-S, Chow EW, Fu C, et al. Calcineurin targets involved in stress survival and fungal virulence. PLoS Pathog. 2016;12:e1005873.   DOI
18 Mylonakis E, Moreno R, El Khoury JB, et al. Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect Immun. 2005;73:3842-3850.   DOI
19 Cox GM, Mukherjee J, Cole GT, et al. Urease as a virulence factor in experimental cryptococcosis. Infect Immun. 2000;68:443-448.   DOI
20 Muren E, Oyen M, Barmark G, et al. Identification of yeast deletion strains that are hypersensitive to brefeldin A or monensin, two drugs that affect intracellular transport. Yeast. 2001;18:163-172.   DOI
21 Gish SR, Maier EJ, Haynes BC, et al. Computational analysis reveals a key regulator of cryptococcal virulence and determinant of host response. mBio. 2016;7:e00313-16.
22 Yasuda S, Morishita S, Fujita A, et al. Mon1-Ccz1 activates Rab7 only on late endosomes and dissociates from the lysosome in mammalian cells. J Cell Sci. 2016;129:329-340.   DOI
23 Deivasigamani S, Basargekar A, Shweta K, et al. Presynaptic regulatory system acts transsynaptically via Mon1 to regulate glutamate receptor levels in Drosophila. Genetics. 2015;201:651-664.   DOI
24 Kinchen JM, Ravichandran KS. Identification of two evolutionarily conserved genes regulating processing of engulfed apoptotic cells. Nature. 2010;464:778-782.   DOI
25 Yousefian J, Troost T, Grawe F, et al. Dmon1 controls recruitment of Rab7 to maturing endosomes in Drosophila. J Cell Sci. 2013;126:1583-1594.   DOI
26 Fraser JA, Subaran RL, Nichols CB, et al. Recapitulation of the sexual cycle of the primary fungal pathogen Cryptococcus neoformans var. gattii:implications for an outbreak on Vancouver Island, Canada. Eukaryot Cell. 2003;2:1036-1045.   DOI
27 Desjardins CA, Giamberardino C, Sykes SM, et al. Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans. Genome Res. 2017;27:1207-1219.   DOI
28 Gerondopoulos A, Langemeyer L, Liang JR, et al. BLOC-3 mutated in Hermansky-Pudlak syndrome is a Rab32/38 guanine nucleotide exchange factor. Curr Biol. 2012;22:2135-2139.   DOI
29 Godinho RM, Crestani J, Kmetzsch L, et al. The vacuolar-sorting protein Snf7 is required for export of virulence determinants in members of the Cryptococcus neoformans complex. Sci Rep. 2014;4:6198.
30 Hu G, Hacham M, Waterman SR, et al. PI3K signaling of autophagy is required for starvation tolerance and virulenceof Cryptococcus neoformans. J Clin Invest. 2008;118:1186-1197.   DOI
31 Perfect JR, Toffaletti DL, Rude TH. The gene encoding phosphoribosylaminoimidazole carboxylase (ADE2) is essential for growth of Cryptococcus neoformans in cerebrospinal fluid. Infect Immun. 1993;61:4446-4451.
32 Hu G, Caza M, Cadieux B, et al. Cryptococcus neoformans requires the ESCRT protein Vps23 for iron acquisition from heme, for capsule formation, and for virulence. Infect Immun. 2013;81:292-302.   DOI
33 Liu X, Hu G, Panepinto J, et al. Role of a VPS41 homologue in starvation response, intracellular survival and virulence of Cryptococcus neoformans. Mol Microbiol. 2006;61:1132-1146.   DOI
34 Yu JH, Hamari Z, Han KH, et al. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol. 2004;41:973-981.   DOI
35 Kidd SE, Hagen F, Tscharke RL, et al. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc Natl Acad Sci USA. 2004;101:17258-17263.   DOI
36 Janbon G, Ormerod KL, Paulet D, et al. Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation. PLoS Genet. 2014;10:e1004261.   DOI
37 Williamson PR, Jarvis JN, Panackal AA, et al. Cryptococcal meningitis: epidemiology, immunology, diagnosis and therapy. Nat Rev Neurol. 2017;13:13-24.
38 Perfect JR, Bicanic T. Cryptococcosis diagnosis and treatment: What do we know now. Fungal Genet Biol. 2015;78:49-54.   DOI
39 Park BJ, Wannemuehler KA, Marston BJ, et al. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS. 2009;23:525-530.   DOI
40 Jung KW, Yang DH, Maeng S, et al. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nat Commun. 2015;6:6757.   DOI
41 Lee KT, So YS, Yang DH, et al. Systematic functional analysis of kinases in the fungal pathogen Cryptococcus neoformans. Nat Commun. 2016;7:12766.   DOI
42 Idnurm A, Bahn YS, Nielsen K, et al. Deciphering the model pathogenic fungus Cryptococcus neoformans. Nat Rev Micro. 2005;3:753-764.   DOI
43 Cui Y, Zhao Q, Gao C, et al. Activation of the Rab7 GTPase by the MON1-CCZ1 complex is essential for PVC-to-vacuole trafficking and plant growth in Arabidopsis. Plant Cell. 2014;26:2080-2097.   DOI
44 Wickner W. Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol. 2010;26:115-136.   DOI
45 Hickey CM, Stroupe C, Wickner W. The major role of the Rab Ypt7p in vacuole fusion is supporting HOPS membrane association. J Biol Chem. 2009;284:16118-16125.   DOI
46 Kwon-Chung KJ, Fraser JA, Doering TL, et al. Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb Perspect Med. 2014;4:a019760.   DOI
47 Liu OW, Chun CD, Chow ED, et al. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell. 2008;135:174-188.   DOI
48 Maier EJ, Haynes BC, Gish SR, et al. Model-driven mapping of transcriptional networks reveals the circuitry and dynamics of virulence regulation. Genome Res. 2015;25:690-700.   DOI
49 Hegedus K, Takats S, Boda A, et al. The Ccz1-Mon1-Rab7 module and Rab5 control distinct steps of autophagy. Mol Biol Cell. 2016;27:3132-3142.   DOI
50 Reggiori F, Klionsky DJ. Autophagic processes in yeast: mechanism, machinery and regulation. Genetics. 2013;194:341-361.   DOI
51 Buchan JR, Kolaitis RM, Taylor JP, et al. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell. 2013;153:1461-1474.   DOI
52 Perfect JR, Lang SD, Durack DT. Chronic cryptococcal meningitis: a new experimental model in rabbits. Am J Pathol. 1980;101:177-194.
53 Wang CW, Stromhaug PE, Kauffman EJ, et al. Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage. J Cell Biol. 2003;163:973-985.   DOI
54 Schimmoller F, Riezman H. Involvement of Ypt7p, a small GTPase, in traffic from late endosome to the vacuole in yeast. J Cell Sci. 1993;106:823-830.
55 Wang T, Ming Z, Xiaochun W, et al. Rab7: role of its protein interaction cascades in endo-lysosomal traffic. Cell Signal. 2011;23:516-521.   DOI
56 Wang CW, Stromhaug PE, Shima J, et al. The Ccz1-Mon1 protein complex is required for the late step of multiple vacuole delivery pathways. J Biol Chem. 2002;277:47917-47927.   DOI
57 Cabrera M, Engelbrecht-Vandre S, Ungermann C. Function of the Mon1-Ccz1 complex on endosomes. Small GTPases. 2014;5:1-3.
58 Meiling-Wesse K, Barth H, Voss C, et al. Yeast Mon1p/Aut12p functions in vacuolar fusion of autophagosomes and cvt-vesicles. FEBS Lett. 2002;530:174-180.   DOI
59 Nordmann M, Cabrera M, Perz A, et al. The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. Curr Biol. 2010;20:1654-1659.   DOI
60 Rodrigues ML, Nosanchuk JD, Schrank A, et al. Vesicular transport systems in fungi. Future Microbiol. 2011;6:1371-1381.   DOI
61 Jahn R, Scheller RH. SNAREs-engines for membrane fusion. Nat Rev Mol Cell Biol. 2006;7:631-643.   DOI