Browse > Article
http://dx.doi.org/10.5941/MYCO.2013.41.3.159

Generation and Evaluation of High ${\beta}$-Glucan Producing Mutant Strains of Sparassis crispa  

Kim, Seung-Rak (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University)
Kang, Hyeon-Woo (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University)
Ro, Hyeon-Su (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University)
Publication Information
Mycobiology / v.41, no.3, 2013 , pp. 159-163 More about this Journal
Abstract
A chemical mutagenesis technique was employed for development of mutant strains of Sparassis crispa targeting the shortened cultivation time and the high ${\beta}$-glucan content. The homogenized mycelial fragments of S. crispa IUM4010 strain were treated with 0.2 vol% methyl methanesulfonate, an alkylating agent, yielding 199 mutant strains. Subsequent screening in terms of growth and ${\beta}$-glucan content yielded two mutant strains, B4 and S7. Both mutants exhibited a significant increase in ${\beta}$-glucan productivity by producing 0.254 and 0.236 mg soluble ${\beta}$-glucan/mg dry cell weight for the B4 and S7 strains, respectively, whereas the wild type strain produced 0.102 mg soluble ${\beta}$-glucan/mg dry cell weight. The results demonstrate the usefulness of chemical mutagenesis for generation of mutant mushroom strains.
Keywords
Beta-glucan; Chemical mutagenesis; Growth rate; Sparassis crispa;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Nameda S, Harada T, Miura NN, Adachi Y, Yadomae T, Nakajima M, Ohno N. Enhanced cytokine synthesis of leukocytes by a beta-glucan preparation, SCG, extracted from a medicinal mushroom, Sparassis crispa. Immunopharmacol Immunotoxicol 2003;25;321-35.   DOI   ScienceOn
2 Harada T, Miura NN, Adachi Y, Nakajima M, Yadomae T, Ohno N. Granulocyte-macrophage colony-stimulating factor (GM-CSF) regulates cytokine induction by 1,3-beta-D-glucan SCG in DBA/2 mice in vitro. J Interferon Cytokine Res 2004;24;478-89.   DOI   ScienceOn
3 Harada T, Kawaminami H, Miura NN, Adachi Y, Nakajima M, Yadomae T, Ohno N. Mechanism of enhanced hematopoietic response by soluble beta-glucan SCG in cyclophosphamidetreated mice. Microbiol Immunol 2006;50;687-700.   DOI
4 Yamamoto K, Kimura T, Sugitachi A, Matsuura N. Antiangiogenic and anti-metastatic effects of beta-1,3-D-glucan purified from hanabiratake, Sparassis crispa. Biol Pharm Bull 2009;32;259-63.   DOI   ScienceOn
5 Kim HH, Lee S, Singh TS, Choi JK, Shin TY, Kim SH. Sparassis crispa suppresses mast cell-mediated allergic inflammation: role of calcium, mitogen-activated protein kinase and nuclear factor-$\kappa$B. Int J Mol Med 2012;30;344-50.   DOI
6 Kim HS, Kim JY, Ryu HS, Park HG, Kim YO, Kang JS, Kim HM, Hong JT, Kim Y, Han SB. Induction of dendritic cell maturation by $\beta$-glucan isolated from Sparassis crispa. Int Immunopharmacol 2010;10;1284-94.   DOI   ScienceOn
7 Ohno N, Miura NN, Nakajima M, Yadomae T. Antitumor 1,3-beta-glucan from cultured fruit body of Sparassis crispa. Biol Pharm Bull 2000;23;866-72.   DOI   ScienceOn
8 Park HG, Shim YY, Choi SO, Park WM. New method development for nanoparticle extraction of water-soluble beta-(1-->3)-D-glucan from edible mushrooms, Sparassis crispa and Phellinus linteus. J Agric Food Chem 2009;57;2147-54.   DOI   ScienceOn
9 Douglas CM. Fungal beta(1,3)-D-glucan synthesis. Med Mycol 2001;39 Suppl 1;55-66.   DOI   ScienceOn
10 Kelly R, Register E, Hsu MJ, Kurtz M, Nielsen J. Isolation of a gene involved in 1,3-beta-glucan synthesis in Aspergillus nidulans and purification of the corresponding protein. J Bacteriol 1996;178;4381-91.
11 Mio T, Adachi-Shimizu M, Tachibana Y, Tabuchi H, Inoue SB, Yabe T, Yamada-Okabe T, Arisawa M, Watanabe T, Yamada-Okabe H. Cloning of the Candida albicans homolog of Saccharomyces cerevisiae GSC1/FKS1 and its involvement in beta-1,3-glucan synthesis. J Bacteriol 1997;179;4096-105.
12 Cheong JC, Park JS, Hong IP, Seok SJ, Jhune CS, Lee CJ. Cultural characteristics of cauliflower mushroom, Sparassis crispa. Kor J Mycol 2008;36;16-21.   DOI   ScienceOn
13 Shim JO, Son SG, Yoon SO, Lee YS, Lee TS, Lee SS, Lee KD, Lee MW. The optimal factors for the mycelial growth of Sparassis crispa. Kor J Mycol 1998;26;39-46.
14 Liu Z, Zhang K, Lin JF, Guo LQ. Breeding cold tolerance strain by chemical mutagenesis in Volvariella volvacea. Sci Horticult 2011;130:18-24.   DOI   ScienceOn
15 Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959;31;426-8.   DOI
16 Lin JH, Yang SS. Mycelium and polysaccharide production of Agaricus blazei Murrill by submerged fermentation. J Microbiol Immunol Infect 2006;39;98-108.
17 Lee J, Kang HW, Kim SW, Lee CY, Ro HS. Breeding of new strains of mushroom by basidiospore chemical mutagenesis. Mycobiology 2011;39;272-7.   DOI