Browse > Article
http://dx.doi.org/10.4489/MYCO.2005.33.2.084

Production of Xylanolytic Enzyme Complex from Aspergillus flavus using Agricultural Wastes  

Kim, Jeong-Dong (Department of Life Science, Hanyang University)
Publication Information
Mycobiology / v.33, no.2, 2005 , pp. 84-89 More about this Journal
Abstract
Five types of agricultural wastes were used for the production of xylanolytic enzyme by Aspergillus flavus K-03. All wastes materials supported high levels of xylanase and ${\beta}-xylosidase$ production. A high level of proteolytic activity was observed in barley and rice bran cultures, while only a weak proteolytic activity was detected in corn cob, barley and rice straw cultures. Maximum production of xylanase was achieved in basal liquid medium containing rice barn as carbon source for 5 days of culture at pH 6.5 and $25^{\circ}C$. The xylanolytic enzyme of A. flavus K-03 showed low thermostability. The times required for 50% reduction of the initial enzyme activity were 90 min at $40^{\circ}C$, 13 min at $50^{\circ}C$, and 3 min at $60^{\circ}C$. Xylanolytic activity showed the highest level at pH $5.5{\sim}10.5$ and more than 70% of the original activity was retained at pH 6.5 and 7.0. The higher stability of xylanolytic enzymes in the broad range of alkaline pH is useful for utilization of the enzymes in industrial process requiring in alkaline conditions. Moreover, the highest production of xylanolytic enzyme was obtained when 0.5% of rice bran was supplied in basal liquid medium. SDS-PAGE analysis revealed a single xylanase band of approximately 28.5 kDa from the culture filtrates.
Keywords
Agricultural wastes; Aspergillus flavus; Rice bran; Xylanolytic enzyme;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kulkarni, N., Shendye, A and Rao, M. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411-456   DOI   ScienceOn
2 Liu, W., Lu, Y. and Ma, G 1999. Induction and glucose repression of endo-$\beta$-xylanase in the yeast Trichospora cutaneum SL 409. Process Biochem. 34: 67-72   DOI   ScienceOn
3 Walsh, G and Headon, D. 1994. Downstream processing. pp. 107-109. In Protein Biotechnology, John Wiley and Sons, UK
4 Wong, K. K. I., Tan, L. U. I. and Saddler, J. N. 1988. Multiplicity of $\beta$1,4-xylanase in microorganisms: function and application. Microbiol. Rev. 52: 305-317
5 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   ScienceOn
6 Lemos, I. L. S., Bon, E. P. S., Santanna, M. F. E. and Pereira, N. Jr. 2000. Thermal stability of xylanases produced by Aspergillus tamarii. Braz. J Microbiol. 31: 206-211
7 Coughlan, M. P. and Hazlewood, G P. 1993. ,$\beta$-l,4-d-Xylandegrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 17: 259-289
8 Haddad, S. G 2000. Associative effects of supplementing barley straw diets with alfalfa hay on rumen environment and nutrient intake and digestibility for ewes. Anim. Feed. Sci. Technol. 87: 163-171   DOI   ScienceOn
9 Haltrich, D., Nidetzky, B. Kulbe, K. D., Steiner, W. and Zupancic, S. 1996. Production of fungal xylanases. Bioresour. Technol. 58: 137-161   DOI   ScienceOn
10 Hoebler, C., Guillon, F., Fardet, A, Cgerbut, C. and Barry, J.-L. 1998. Gastrointestinal or simulated in vitro digestion changes dietary fibre properties and their fermentation. J. Sci. Food Agric. 77: 327-333   DOI   ScienceOn
11 Chandra, R. K. and Chandra, T. S. 1996. Purification and characterization of xylanase from alkali-tolerant Aspergillus fischeri Fxn1. FEMS Microbiol. Lett. 145: 457-461   DOI   ScienceOn
12 Lan-Phan, P., Taillandier, P., Delmas, M. and Strehaiano, P. 1998. Production of xylanases by Bacillus polymyxa using lignocellulosic wastes. Ind. Crop. Prod. 7: 195-203   DOI   ScienceOn
13 Kadowaki, M. K., Pacheco, M. A C. and Peralta, R. M. 1995. Xylanase production by Aspergillus isolated grown on com cob. Rev. Microbiol. 26: 219-223
14 Kim, J.-D. 2003. Keratinolytic activity of five Aspergillus species isolated from poultry farming soil in Korea. Mycobiology 31: 157-161   DOI
15 Rani, D. S. and Nand, K. 2000. Production of thermostable cellulose-tree xylanase by Clostridium absonum CFR-702. Process Biochem. 36: 355-362   DOI   ScienceOn
16 Raper, K. B. and Fennel, D. I. 1965. The Genus Aspergillus. The Williams & Wilkins Company. Baltimore, U.S.A
17 Ryu, S.-N., Park, S.-Z., Kim, H.-Y., Han, S.-J. and Ku, B.-I. 2002. C-G content rice bran obtained from different degrees of polishing in black purple rice, Heugjinjubyeo. Kor. J Breed. 34: 299-302
18 Smith, D. C. and Wood, T. M. 1991. Xylanase production by Aspergillus awamori. Development of a medium and optimization of the fermentation parameters for the production of extracellular xylanase and $\beta$-xylosidase while maintaining low protease production. Biotechnol. Bioeng. 38: 883-890   DOI   ScienceOn
19 Duenas, R., Tengerdy, R. P. and Gutierrez-Correa, M. 1995. Cellulose production by mixed fungi in solid-substrate fermentation of bagasse. World J. Microbiol. Biotechnol. 11: 333-337   DOI   ScienceOn
20 Damaso, M. C. T., Andrade, C. M. M. C. and Pereira, N. Jr. 2000. Use of com cob for endoxylanase production by thermophilic fungus Termomyces lanuginosus I OC-4115. Appl. Biochem. Biotechnol. 84-86: 821-834
21 Fernandes-Espinar, M. T., Ramun, D., Pifiaga, F. and Valles, S. 1992. Xylanase production by Aspergillus nidulans. FEMS Microbiol. Lett. 91: 91-96   DOI
22 Ferreira, G, Boer, C. G and Peralta, R. M. 1999. Production of xylanolytic enzymes by Aspergillus tamarii in solid state fermentation. FEMS Microbiol. Lett. 173: 335-339   DOI   ScienceOn
23 Flores, M. E., Perea, M., Rodiguez, O., Malvaez, A and Huitr6n, C. 1996. Physiological studies on induction and catabolite repression of ,$\beta$-xylosidase and endoxylanase in Streptomyces sp. CH-M-1035. J. Biotechnol. 49: 179-187   DOI   ScienceOn
24 Abdel-Satar, M. A. and EI-Said, A. H. M. 2001. Xylan-decomposing fungi and xylanolytic activity in agricultural and industrial wastes. Int. Biodeterior. Biodegrad. 47: 15-21   DOI   ScienceOn
25 Mes-Hartree, M., Hogan, C. M. and Saddler, J. N. 1998. Influence of growth substrate on production of cellulose enzymes by Trichoderma harzianum E58. Biotechnol. Bioeng. 31: 725-729   DOI   ScienceOn
26 Miller, G L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428   DOI
27 Prakash, P., Reddy, D. V., Ramachandra-Reddy, R. and Krishna, N. 1996. The catalytic effect of supplementation of protein meals on utilization of rice straw-poultry droppings-rice bran diet in buffaloes. Anim. Food Sci. Technol. 63: 229-243   DOI   ScienceOn
28 Blanko, A. and Pastor, F. I. J. 1993. Characterization of cellulosefree xylanases from the newly isolated Bacillus sp. strain BP23. Can. J Microbiol. 39: 1162-1166   DOI   ScienceOn
29 Carmona, E. C., Pizzironi-Kleiner, A A., Monteiro, R. T. R. and Jorge, J. A 1997. Xylanase production by Aspergillus versicolor. J. Basic Microbiol. 38: 387-394
30 Christov, L. P., Szakacs, G and Balakrishnan, H. 1999. Production, partial characterization and use of fungal cellulose-free xylanases in pulp bleaching. Process Biochem. 34: 511-517   DOI   ScienceOn
31 Coelho, G D. and Carmona, E. C. 2003. Xylanolytic complex from Aspergillus giganteus: production and characterization. J. Basic Microbiol. 43: 269-277   DOI   ScienceOn
32 Takagi, M. 1987. Pretreatment of lignocellulosic materials with hydrogen peroxide in presence of manganese compounds. Biotechnol. Boeng. 29: 165-170   DOI   ScienceOn
33 Souza, D. F., Souza, C. G M. and Peralta, R. M. 2001. Effect of easily metabolizable sugars in the production of xylanase by Aspergillus tamari in solid-state fermentation. Process Biochem. 36: 835-838   DOI   ScienceOn
34 Taiz, L. and Honigman, W. A. 1976. Production of cell hydrolyzing enzyme by barley aleurone layer in response to gibberellic acid. Plant Physiol. 58: 380-386   DOI   ScienceOn
35 Madrid, J., Hernandez, F. and Megas, M. D. 1999. Comparison of in vitro techniques for predicting digestibility of mixed cereal straw and citrus by-product diets in goats. J Sci. Food. Agric. 79: 567-572   DOI   ScienceOn
36 Bhat, M. K. 2000. Cellulases and related enzymes in biotechnology. Biotech. Advan. 18: 355-383   DOI   ScienceOn