Browse > Article
http://dx.doi.org/10.33961/jecst.2022.00129

Mass Transport Properties and Influence of Natural Convection for Voltammetry at the Agarose Hydrogel Interface  

Kim, Byung-Kwon (Department of Chemistry and Nanoscience, Ewha Womans University)
Park, Kyungsoon (Department of Chemistry and Cosmetics, Jeju National University)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.3, 2022 , pp. 347-353 More about this Journal
Abstract
Agarose hydrogel, a solid electrolyte, was investigated voltammetrically in terms of transport properties and natural convection effects using a ferrocenyl compound as a redox probe. To confirm the diffusion properties of solute on the agarose interface, the diffusion coefficients (D) of ferrocenemethanol in agarose hydrogel were determined by cyclic voltammetry (CV) according to the concentration of agarose hydrogel. While the value of D on the agarose interface is smaller than that in the bulk solution, the square root of the scan rate-dependent peak current reveals that the mass transport behavior of the solute on the agarose surface shows negligible convection or migration effects. In order to confirm the reduced natural convection on the gel interface, scan rate-dependent CV was performed in the solution phase and on the agarose surface, respectively. Slow scan voltammetry at the gel interface can determine a conventional and reproducible diffusion-controlled current down to a scan rate of 0.3 mV/s without any complicated equipment.
Keywords
Hydrogel; Agarose; Natural convection; Slow scan voltammetry; Diffusion coefficient;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 N. G. Tsierkezos, J. Solution Chem., 2007, 36(3), 289-302.   DOI
2 R. J. Foster, A. J. Kelly and J. G. Vos, J. Electroanal. Chem., 1989, 270(1-2), 365-379.   DOI
3 J. Lee, J. Lee, S. Song and B. K. Kim, Bull. Korean Chem. Soc., 2021, 42(5), 818-823.   DOI
4 X. Gao, J. Lee and H. S. White, Anal. Chem., 1995, 67(9), 1541-1545.   DOI
5 J. K. Novev, S. Eloul and R. G. Compton, J. Phys. Chem. C, 2016, 120(25), 13549-13562.   DOI
6 K. Park, E. Kim, J. H. Park and S. Hwang, Electrochem. Commun., 2017, 82, 93-97.   DOI
7 J. Labille, N. Fatin-Rouge and J. Buffle, Langmuir, 2007, 23(4), 2083-2090.   DOI
8 M. Ciszkowska and M. D. Guillaume, J. Phys. Chem. A, 1999, 103(5), 607-613.   DOI
9 A. L. Crumbliss, S. C. Ferine, A. K. Edwards and D. P. Rillema, J. Phys. Chem., 1992, 96(3), 1388-1394.   DOI
10 C. Amatore, S. Szunerits, L. Thouin and J. S. Warkocz, J. Electroanal. Chem., 2001, 500(1-2), 62-70.   DOI
11 T. P. Vales, J. P. Jee, W. Y. Lee, I. Min, S. Cho and H. J. Kim, Bull. Korean Chem. Soc., 2020, 41(4), 406-412.   DOI
12 S. Khajouei, H. Ravan and A. Ebrahimi, Adv. Colloid Interface Sci., 2020, 275, 102060.   DOI
13 S.-J. Kim and W. Shin, J. Electrochem. Sci. Technol., 2021, 12(2), 225-229.   DOI
14 J. D. Tang, C. Mura and K. J. Lampe, J. Am. Chem. Soc., 2019, 141(12), 4886-4899.   DOI
15 A. Vashist, A. Vashist, Y. K. Gupta and S. Ahmad, J. Mater. Chem. B, 2014, 2(2), 147-166.   DOI
16 C. A. Dreiss, Curr. Opin. Colloid Interface Sci., 2020, 48, 1-17.   DOI
17 C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang and J. Zhang, Chem. Soc. Rev., 2015, 44(21), 7484-7539.   DOI
18 F. Zhang, F. Xiao, Z. H. Dong and W. Shi, Electrochimica Acta, 2013, 114, 125-132.   DOI
19 S. Waki and D. Harvey, Biopolymers, 1982, 21(9), 1909-1926.   DOI
20 N. Pernodet, M. Maaloum and B. Tinland, Electrophoresis, 1997, 18(1), 55-58.   DOI
21 M. Rosi, F. Iskandar, M. Abdullah and Khairurrijal., Int. J. Electrochem. Sci., 2014, 9(8), 4251-4256.   DOI
22 B. Crulhas, N. P. Ramos, C. R. Basso, V. E. Costa, G. R. Castro and V. A. Pedrosa, Int. J. Electrochem. Sci., 2014, 9, 7596-7604.   DOI
23 Y. Yin, H. Zhang and K. Nishinari, J. Phys. Chem. B, 2007, 111(7), 1590-1596.   DOI
24 H. Kang, S. Hwang and J. Kwak, Nanoscale, 2015, 7(3), 994-1001.   DOI
25 M. H. Lee and Y. T. Kim, Electrochem. Solid-State Lett., 1999, 2, 72-74.   DOI
26 A. Mateescu, Y. Wang, J. Dostalek and U. Jonas, Membranes (Basel), 2012, 2(1), 40-69.   DOI
27 A. Herrmann, R. Haag and U. Schedler, Adv. Healthc. Mater., 2021, 10(11), 2100062.   DOI
28 A. S. Hoffman, Adv. Drug Deliv. Rev., 2012, 64, 18-23.   DOI
29 F. Zhao, Y. Shi, L. Pan and G. Yu, Acc. Chem. Res., 2017, 50(7), 1734-1743.   DOI
30 M. Maaloum, N. Pernodet and B. Tinland, Electrophoresis, 1998, 19(10), 1606-1610.   DOI
31 N. Fatin-Rouge, A. Milon and A. Buffle, J. Phys. Chem. B, 2003, 107(44), 12126-12137.   DOI
32 T. Kim, W. Choi, H.-C. Shin, J.-Y. Choi, J. M. Kim, M.-S. Park and W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(1), 14-25.   DOI
33 D. Shoup and A. Szabo, J. Electroanal. Chem., 1982, 140(2), 237-245.   DOI
34 K. Ngamchuea, S. Eloul, K. Tschulik and R. G. Compton, Anal. Chem., 2015, 87(14), 7226-7234.   DOI
35 B. Wang, K. J. Aoki, J. Chen and T. Nishiumi, J. Electroanal. Chem., 2013, 700, 60-64.   DOI
36 A. J. Bard and L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd Ed., Wiley, New York, 2002.