Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01494

Ionic Additives to Increase Electrochemical Utilization of Sulfur Cathode for Li-S Batteries  

Seong, Min Ji (Department of Chemistry, Research Institute of Basic Sciences, College of Natural Science, Incheon National University)
Yim, Taeeun (Department of Chemistry, Research Institute of Basic Sciences, College of Natural Science, Incheon National University)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.2, 2021 , pp. 279-284 More about this Journal
Abstract
The high theoretical specific capacity of lithium-sulfur (Li-S) batteries makes them a more promising energy storage system than conventional lithium-ion batteries (LIBs). However, the slow kinetics of the electrochemical conversion reaction seriously hinders the utilization of Li-S as an active battery material and has prevented the successful application of Li-S cells. Therefore, exploration of alternatives that can overcome the sluggish electrochemical reaction is necessary to increase the performance of Li-S batteries. In this work, an ionic liquid (IL) is proposed as a functional additive to promote the electrochemical reactivity of the Li-S cell. The sluggish electrochemical reaction is mainly caused by precipitation of low-order polysulfide (l-PS) onto the positive electrode, so the IL is adopted as a solubilizer to remove the precipitated l-PS from the positive electrode to promote additional electron transfer reactions. The ILs effectively dissolve l-PS and greatly improve the electrochemical performance by allowing greater utilization of l-PS, which results in a higher initial specific capacity, together with a moderate retention rate. The results presented here confirmed that the use of an IL as an additive is quite effective at enhancing the overall performance of the Li-S cell and this understanding will enable the construction of highly efficient Li-S batteries.
Keywords
Lithium Sulfur Batteries; Electrolyte; Polysulfide; Additive;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. S. Kim, T. -G. Jeong, Y. -T. Kim, J. Electrochem. Sci. Technol., 2016, 7(3), 228-233.   DOI
2 X. Zhao, G. Cheruvally, C. Kim, K. -K. Cho, H. -J. Ahn, K. -W. Kim, J. -H. Ahn, J. Electrochem. Sci. Technol., 2016, 7(2), 97-114.   DOI
3 N. Plylahan, M. Kerner, D. -H. Lim, A. Matic, P. Johansson, Electrochim. Acta., 2016, 216, 24-34.   DOI
4 S. Kim, Y. Jung, S. J. Park, Electrochim. Acta., 2007, 52(6), 2116-2122.   DOI
5 J. H. Shin, E. J. Cairns, J. Power Sources., 2008, 177(2), 537-545.   DOI
6 Y. Yan, J. -C. Xie, Y. Zhao, Y. Zhang, N. Cui, C. Li, C. Hao, J. Alloys Compd., 2019, 805, 733-739.   DOI
7 R. Yan, M. Oschatz, F. Wu, Carbon., 2020, 161, 162-168.   DOI
8 S. Asha, K. P. Vijayalakshmi, B. K. George, Int. J. Quantum Chem., 2019, 119(22), e26014.   DOI
9 W. Zhang, Y. Wang, X. Lan, Y. Huo, Res. Chem. Intermed., 2020, 46(6), 3007-3023.   DOI
10 S. Wilken, S. Xiong, J. Scheers, P. Jacobsson, P. Johansson, J. Power Sources., 2015, 275, 935-942.   DOI
11 M. Rana, S. A. Ahad, M. Li, B. Luo, L. Wang, I. Gentle, R. Knibbe, Energy Storage Mater., 2019, 18, 289-310.   DOI
12 L. Wang, Z. Y. Wang, J. F. Wu, G. R. Li, S. Liu, X. P. Gao, Nano Energy., 2020, 77, 105173.   DOI
13 J. W. Park, J. Kang, J. Y. Koh, A. Caron, S. Kim, Y. Jung, J. Electrochem. Sci. Technol., 2020, 11(1), 33-40.   DOI
14 M. Chen, X. Zhao, Y. Li, P. Zeng, H. Liu, H. Yu, M. Wu, Z. Li, D. Shao, C. Miao, G. Chen, H. Shu, Y. Pei, X. Wang, Chem. Eng. J., 2020, 385, 123905.   DOI
15 J. L. Cheong, A. A. AbdelHamid, J. Y. Ying, Nano Energy., 2019, 66, 104114.   DOI
16 T. Li, X. Bai, U. Gulzar, Y. -J. Bai, C. Capiglia, W. Deng, X. Zhou, Z. Liu, Z. Feng, R. P. Zaccaria, Adv. Funct. Mater., 2019, 29(32), 1901730.   DOI
17 S. Lin, M. K. Shafique, Z. Cai, J. Xiao, Y. Chen, Y. Wang, X. Hu, ACS Nano., 2019, 13(11), 13037-13046.   DOI
18 S. Xiong, K. Xie, Y. Diao, X. Hong, Electrochim. Acta., 2012, 83, 78-86.   DOI
19 J. K. Kang, T. J. Kim, J. W. Park, Y. Jung, The Bull. Korean Chem. Soc., 2019, 40(6), 566-571.   DOI
20 S. Menne, R. S. Kuhnel, A. Balducci, Electrochim. Acta., 2013, 90, 641-648.   DOI
21 S. S. Zhang, J. Power Sources., 2013, 231, 153-162.   DOI
22 T. Mukra, Y. Horowitz, I. Shekhtman, M. Goor, S. Drvaric Talian, L. Burstein, J. Kasnatscheew, P. Meister, M. Grunebaum, M. Winter, H. D. Wiemhofer, D. Golodnitsky, E. Peled, Electrochim. Acta., 2019, 307, 76-82.   DOI
23 J. Shim, T. J. Ko, K. Yoo, J. Ind. Eng. Chem., 2019, 80, 283-291.   DOI
24 S. Duangdangchote, A. Krittayavathananon, N. Phattharasupakun, M. Sawangphruk, ECS Trans., 2020, 97(7), 827.   DOI
25 J. Xu, W. Zhang, H. Fan, F. Cheng, D. Su, G. Wang, Nano Energy., 2018, 51, 73-82.   DOI
26 C. Y. Fan, Y. P. Zheng, X. H. Zhang, Y. H. Shi, S. Y. Liu, H. C. Wang, X. L. Wu, H. Z. Sun, J. P. Zhang, Adv. Energy Mater., 2018, 8(18), 1703638.   DOI
27 Z. Yuan, H. -J. Peng, T. -Z. Hou, J. Q. Huang, C. -M. Chen, D. W. Wang, X. B. Cheng, F. Wei, Q. Zhang, Nano Lett., 2016, 16(1), 519-527.   DOI
28 Z. -L. Xu, J. -K. Kim, K. Kang, Nano Today., 2018, 19, 84-107.   DOI
29 M. Rana, B. Luo, M. R. Kaiser, I. Gentle, R. Knibbe, J. Energy Chem., 2020, 42, 195-209.   DOI