Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01781

Further Electrochemical Degradation of Real Textile Effluent Using PbO2 Electrode  

Wang, Chao (College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology)
Tian, Penghao (College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.2, 2021 , pp. 266-271 More about this Journal
Abstract
A commercial PbO2 electrode was adopted as the anode for the electrochemical degradation of the real textile effluent with the initial COD of 56.0 mg L-1 and the stainless steel plate as the cathode. The effect of the initial pH, the electrolyte flow rate and the cell voltage on the COD, the current efficiency and the energy consumption were investigated without the addition of NaCl or Na2SO4. The experimental results illustrated that the PbO2 electrode can reduce the COD of the textile effluent from 56.0 mg L-1 to 26.0 mg L-1 with the current efficiency of 86.1% and the energy consumption of 17.5 kWh kg-1 (per kilogram of degraded COD) under the optimal operating conditions. Therefore PbO2 electrode as the anode was promising to further electrochemically degrade the real textile effluent.
Keywords
Electrochemical Degradation; Textile Effluent; $PbO_2$ Electrode; Current Efficiency; Energy Consumption;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 W.Y. Kim, D.J. Son, C.Y. Yun, D.G. Kim, D. Chang, Y. Sunwoo, K.H. Hong, J. Electrochem. Sci. Technol., 2017, 8(2), 124-132.   DOI
2 J.M. Aquino, G.F. Pereira, R.C. Rocha-Filho, N. Bocchi, S.R. Biaggio, J. Hazard. Mater. 2011, 192(3), 1275-1282.   DOI
3 G. Liu, H. Zhou, J. Teng, S. You, Chem. Eng. J., 2019, 371, 7-14.   DOI
4 M. Santhanam, R. Selvaraj, S. Annamalai, M. Sundaram, Chemosphere, 2017, 186, 1026-1032.   DOI
5 J. Chen, Y. Xia, Q. Dai, Electrochim. Acta, 2015, 165, 277-287.   DOI
6 M.R. Samarghandi, A. Dargahi, A. Shabanloo, H.Z. Nasab, Y. Vaziri, A. Ansari, Arab. J. Chem., 2020, 13(8), 6847-6864.   DOI
7 J.L.D.S. Duarte, L. Meili, J.I. Soletti, C.L.D.P. Zanta, J. Water Process Eng., 2019, 31, 100841.   DOI
8 A. Mukimin, H. Vistanty, N. Zen, Chem. Eng. J., 2015, 259, 430-437.   DOI
9 D.H.S. Santos, J.L.S. Duarte, M.G.R. Tavares, M.G. Tavares, L.C. Friedrich, L. Meili, W.R.O. Pimentel, J. Tonholo, C.L.P.S. Zanta, Chem. Eng. Process. Process Intensif., 2020, 153, 107940.   DOI
10 I.M.S. Pillai, A.K. Gupta, J. Environ. Manag., 2017, 193, 524-531.   DOI
11 Y.A. Oktem, B. Yuzer, M.I. Aydin, H.E. Okten, S. Meric, H. Selcuk, J. Environ. Manag., 2019, 247, 749-755.   DOI
12 Y. He, H. Lin, Z. Guo, W. Zhang, H. Li, W. Huang, Sep. Purif. Technol., 2019, 212, 802-821.   DOI
13 S. Samsami, M. Mohamadi, M.H. Sarrafzadeh, E.R. Rene, M. Firoozbahr, Process Saf. Environ. Prot., 2020, 143, 138-163.   DOI
14 A.F.T. Auguste, G.C. Quand-Meme, K. Ollo, B. Mohamed, S.S. placide, S. Ibrahima, O. Lassine, J. Electrochem. Sci. Technol., 2016, 7(1), 82-89.   DOI
15 M. Xu, Z. Wang, F. Wang, P. Hong, C. Wang, X. Ouyang, C. Zhu, Y. Wei, Y. Hun, W. Fang, Electrochim. Acta, 2016, 201, 240-250.   DOI
16 K. Irikura, N. Bocchi, R.C. Rocha-Filho, S.R. Biaggio, J. Iniesta, V. Montiel, J. Environ. Manag., 2016, 183, 306-313.   DOI
17 J. Ding, C. Zheng, L. Wang, C. Lu, B. Zhang, Y. Chen, X. Zhuang, J. Mater. Chem. A., 2015, 87, 826-838.
18 J. Rovira, J.L. Domingo, Environ. Res., 2019, 168, 62-69.   DOI
19 R. Kiani, F. Mirzaei, F. Ghanbari, R. Feizi, F. Mehdipour, J. Water Process Eng., 2020, 38, 101623.   DOI
20 C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, J. Environ. Manag., 2016, 182, 351-366.   DOI
21 N. Daneshvar, D. Salari, A.R. Khatac, Photochem. Photobiol. A Chem., 2003, 157(1), 111-116.   DOI
22 F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Appl. Catal. B Environ., 2017, 202, 217-261.   DOI
23 Y. Xia, Q. Dai, J. Chen, J. Electroanal. Chem., 2015, 744, 117-125.   DOI
24 C. Yang, S. Shang, X.Y. Li, Sep. Purif. Technol., 2021, 258, 118035.   DOI
25 J. Zhao, C. Zhu, J. Lu, C. Hu, S. Peng, T. Chen, Electrochim. Acta, 2014, 118, 169-175.   DOI
26 Q. Dai, J. Zhou, X. Meng, D. Feng, C. Wu, J. Chen, Chem. Eng. J., 2016, 289, 239-246.
27 F. Wei, D. Liao, Y. Lin, C. Hu, J. Ju, Y. Chen, D. Feng, Sep. Purif. Technol., 2021, 258, 118056.   DOI
28 M.D. Hossain, C.M. Mustafa, M.M. Islam, J. Electrochem. Sci. Technol., 2017, 8(3), 197-205.   DOI
29 I. Elaissaoui, H. Akrout, S. Grassini, D. Fulginiti, L. Bousselmi, Chemosphere, 2019, 217, 26-34.   DOI
30 Y. Xia, Q. Dai, Chemosphere, 2018, 205, 215-222.   DOI
31 C. Singaravadivel, M. Vanitha, N. Balasubramanian, J. Electrochem. Sci. Technol., 2012, 3(1), 44-49.   DOI
32 Y. Xia, G. Wang, L. Guo, Q. Dai, X. Ma, Chemosphere, 2020, 241, 125010.   DOI
33 X. Duan, F. Ma, Z. Yuan, L. Chang, X. Jin, J. Taiwan. Inst. Chem. Eng., 2013, 44(1), 95-102.   DOI
34 S. Garcia-Segura, J.D. Ocon, M.N. Chong, Process Saf. Environ. Prot., 2018, 113, 48-67.   DOI