Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01725

One-Pot Electrochemical Synthesis of Hierarchical Porous Niobium  

Joe, Gihwan (School of Materials Science and Engineering, Pusan National University)
Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.2, 2021 , pp. 257-265 More about this Journal
Abstract
In this study, we report niobium (Nb) with hierarchical porous structure produced by a one-pot, HF-free electrochemical etching process. It is proved experimentally that a well-defined hierarchical porous structure is produced from the combination of a limited repetition of pulse etching and high concentration of aggressive anion (i.e., SO42-), which results in hierarchical pores with high order over 3. A formula is derived for the surface area of porous Nb as a function of the hierarchical order of pores while the experimental surface area is estimated on the basis of the electrochemical gas evolution rate on porous Nb. From the comparison of the theoretical and experimental surface areas, an in-depth understanding was gained about porous structure produced in this work in terms of the actual pore shape and hierarchical pore order.
Keywords
Electrochemical Etching; HF-free; Niobium; Hierarchical Pore Structure; Fractal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Altomare, G. Cha, P. Schmuki, Electrochim. Acta., 2020, 136158.
2 J. Choi, J.H. Lim, S.C. Lee, J.H. Chang, K.J. Kim and M.A. Cho, Electrochim. Acta., 2006, 51(25), 5502-5507.   DOI
3 K. Lee, Y. Yang, M. Yang and P. Schmuki, Chem. Eur. J., 2012, 18(31), 9521-9524.   DOI
4 J.E. Yoo and J. Choi, Electrochem. commun., 2011, 13(3), 298-301.   DOI
5 Z. Huang, N. Geyer, P. Werner, J. Boor and U. Gosele, Ad.v Mater., 2011, 23(2), 285-308.   DOI
6 J.M. Dura and A. Sarangan, J Micro Nanolithogr MEMS MOEMS., 2017, 16(1), 014502.   DOI
7 S.R. Keller, Math. Comput., 1979, 33(145), 310-314.   DOI
8 D. Rosenfeld, P.E. Schmid, S. Szeles, F. Levy, V. Demarne and A. Grisel, Sens. Actuators B Chem., 1996, 37(1-2), 83-89.   DOI
9 W.-S. Choi, W. Chang and H.-C. Shin, J. Solid State Electrochem., 2014, 18(2), 427-433.   DOI
10 J. Come, V. Augustyn, J.W. Kim, P. Rozier, P-L. Taberna, P. Gogotsi, J.W. Long, B. Dunn and P. Simon, J. Electrochem. Soc., 2014, 161(5), 718-725.
11 R. Ghosh, M.K. Brennaman, T. Uher, M-R. Ok, E.T. Samulski, L.E. McNeil, T.J. Meyer and R. Lopez, ACS Appl. Mater. Interfaces., 2011, 3(10), 3929-3935.   DOI
12 L. Chambon, A. Pauly, J.P. Germain, C. Maleysson, V. Demarne and A. Grisel, Sens. Actuators B Chem., 1997, 43(1-3), 60-64.   DOI
13 Z. Wang, Y. Hu, W. Wang, X. Zhang, B. Wang, H. Tian, Y. Wang, J. Guan and H. Gu, Int. J. Hydrogen. Energy., 2012, 37(5), 4526-4532.   DOI
14 R.A. Rani, A.S. Zoolfakar, M.F.M. Ryeeshyam, A.S Ismail, M.H. Mamat, S. Alrokayan, H. Khan, K. Kalantar-Zadeh and M.R. Mahmood, J. Electron. Mater., 2019, 48(6), 3805-3815.   DOI
15 X. Fang, L. Hu, K. Huo, B. Gao, L. Zhao, M. Liao, P.K. Chu, Y. Bando and D. Golberg, Adv. Funct. Mater., 2011, 21(20), 3907-3915.   DOI
16 K. Kim, J. Park, G. Cha, J.E. Yoo and J. Choi, Mater. Chem. Phys., 2013, 141(2-3), 810-815.   DOI
17 A.L. Viet, M.V. Reddy, R. Jose, B.V.R. Chowdari and S. Ramakrishna, J. Phys. Chem. C., 2010, 114(1), 664-671.   DOI
18 J.W. Kim, T. Wada, S.G. Kim and H. Kato, Mater. Lett., 2014, 116, 223-226.   DOI
19 R.A. Rani, A.S. Zoolfakar, A.P. O'Mullane, M.W. Austin and K. Kalantar-Zadeh, J. Mater. Chem. A Mater., 2014, 2(38), 15683-15703.   DOI
20 H-C. Shin, J. Dong and M. Liu, Adv. Mater., 2003, 15(19), 1610-1614.   DOI
21 H.-R. Jung, E.-J. Kim, Y.-J. Park and H.-C. Shin, J. Power Sources., 2011, 196(11), 5122-5127.   DOI
22 Y.-M. Chun and H.-C. Shin, Electrochim. Acta, 2016, 209, 369-378.   DOI
23 B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, Z. Zhou and Y. Yang, Electrochem. commun., 2008, 10(5), 795-797.   DOI
24 V. Augustyn, P. Simon and B. Dunn, Energy Environ. Sci., 2014, 7(5), 1597-1614.   DOI
25 S. Lou, X. Cheng, L. Wang, J. Gao, Q. Li, Y. Ma, Y. Gao, P. Zuo, C. Du and G. Yin, J. Power Sources., 2017, 361, 80-86.   DOI
26 R.A. Rani, A.S. Zoolfakar, J.Z. Ou, M.R. Field, M. Austin and K. Kalantar-zadeh, Sens. Actuators B Chem., 2013, 176, 149-156.   DOI
27 Y.R. Lim, Y. Ko, J. Park, W.I. Cho, S.A. Lim and E.H. Cha, J. Electrochem. Sci. Technol., 2019, 10(1), 89-97.   DOI
28 W. Zhao, W. Choi and W-S. Yoon, J. Electrochem. Sci. Technol., 2019, 11(3), 195-219.   DOI
29 X.W. Lou, L.A. Archer and Z. Yang, Adv. Mater., 2008, 20(21), 3987-4019.   DOI
30 C. Liu, F. Li, L.P. Ma and H.M. Cheng, Adv. Mater., 2010, 22(8), 28-62.
31 J.Z. Ou, R.A. Rani, M-H Ham, M.R. Field, Y. Zhang, H. Zheng, P. Reece. S. Zhuiykov, S. Sriram, M. Bhaskaran, R.B. Kaner and K. Kalantar-zadeh, ACS nano., 2012, 6(5), 4045-4053.   DOI
32 R.A. Rani, A.S. Zoolfakar, J.Z. Ou, R.A. Kadir, H. Nili, K. Latham, S. Sriram, M. Bhaskaran, S. Zhuiykov, R.B. Kaner and K. Kalantar-zadeh, ChemComm., 2013, 49(56), 6349-6351.