Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01396

Improving the Stability of Series-Connected Solid Oxide Fuel Cells by Modifying the Electrolyte Composition  

Kim, Young Je (Department of Materials Convergence and System Engineering, Changwon National University)
Lim, Hyung-Tae (Department of Materials Convergence and System Engineering, Changwon National University)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.1, 2021 , pp. 159-165 More about this Journal
Abstract
YSZ based anode supported solid oxide fuel cells (SOFCs) were prepared, and two cells with different electrolyte thicknesses were connected in series for the simulation of a cell-imbalanced fuel cell stack. Pure YSZ cells in a series connection exhibited a rapid degradation when a thick electrolyte cell was operated under a negative voltage. On the other hand, ceria added-YSZ cells in a series connection were stable under similar operating conditions, and the power density and impedance were about the same as those before tests. The improved stability was due to the reduction of internal partial pressure in the electrolyte by locally increasing the electronic conduction. Thus, we propose a new protection method, i.e., the local addition of ceria in the YSZ electrolyte, to extend the lifetime of a cell-imbalanced SOFC stack.
Keywords
Solid Oxide Fuel Cells; Degradation; Electronic Conduction; YSZ Electrolyte;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A.K. Niaz, M.G. Jung, J.-Y. Park, A.V. Virkar, H.-T. Lim, J. Power Sources 2019, 438, 226945   DOI
2 S.C. Singhal K. Kendall, High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, 2003.
3 S. D. Priya, A. I. Selvakumar, A. S. Nesaraj, J. Electrochem. Sci. Technol. 2020, 11(2), 99-116   DOI
4 H.-T. Lim, A.V. Virkar, ECS trans. 2009, 25(2), 447.   DOI
5 K.D. Seo, Y.J. Kim, J.-Y. Park, H.-T. Lim, Int. J. Hydrogen Energy 2018, 43(4), 2349-2358   DOI
6 M.T. Hernandez, J. R. Jurado, P. Duran, J.C.C. Abrantes, F.M.B., Marques, Solid State Ion., 1992, 50(1-2), 167-173   DOI
7 C. H. Lee, G. M Choi, Solid State Ion. 2000, 135(1-4), 653-661   DOI
8 K. Kobayashi, S. Yamaguchi, T. Higuchi, S. Shin, Y. Iguchi, Solid State Ion. 2000, 135(1-4), 643-651   DOI
9 D. Moy, S. R. Narayanan, J. Electrochem. Soc. 2017, 164(4), A560   DOI
10 D. S. Patil, N. Venkataramani, V.K. Rohatgi, J. Mater. Sci. 1988, 23(9), 3367-3374   DOI
11 B. Cales, J. F. Baumard, J. Electrochem. Soc. 1984, 131(10), 2407   DOI
12 S. P. Jiang, J. G. Love, J. P. Zhang, M. Hoang, Y. Ramprakash, A. E. Hughes, S. P. S. Badwal, Solid State Ion. 1999, 121(1-4), 1-10.   DOI
13 M. W. Kim, M. J. Son, H. Park, J.-Y. Park, H.-T. Lim, Fuel Cells 2020, 20(2), 212-219   DOI
14 M. J. Son, M. W. Kim, A. V. Virkar, H.-T. Lim, Electrochim. Acta., 2020, 136450   DOI
15 W.F. Bentley, IEEE., 1997, 223-226
16 A. V. Virkar, J. Power Sources., 2007, 172(2), 713-724.   DOI
17 M. Y. Park, H. Y. Bae, H.-T. Lim., J. Kor. Ceram. Soc. 2014, 51(4), 289   DOI
18 T. Ohji, M. Singh, Engineered Ceramics: Current Status and Future Prospects, John Wiley & Sons., 2016
19 S. Y. Bae, J.-Y. Park, H.-T. Lim, Electrochim. Acta., 2017, 236, 399-407   DOI
20 B.-K. Park, Q. Zhang, P.W. Voorhess, S. A Barnett, Energy Environ. Sci., 2019, 12(10), 3053-3062   DOI
21 H.-T. Lim, A. V. Virkar, J. Power Sources., 2008, 185(2), 790-800   DOI
22 L. Zhang, L. Zuh, A. V. Virkar, J. Electrochem. Soc., 2019, 166(16), F1275   DOI
23 A. V. Virkar, J. Power Sources 2011, 196(14), 5970-5984   DOI