Browse > Article
http://dx.doi.org/10.33961/jecst.2020.00759

MnO2 Nanowires Electrodeposited in a Porous Network of Agarose Gel as a Pseudocapacitor Electrode  

Jin, Sohyun (Department of Chemistry, Kookmin University)
Ryu, Ilhwan (Department of Chemistry, Kookmin University)
Lim, Geo (Department of Biology, Boston University)
Yim, Sanggyu (Department of Chemistry, Kookmin University)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.4, 2020 , pp. 406-410 More about this Journal
Abstract
Despite a simple preparation of manganese oxide (MnO2) nanowires by electrodeposition, the improvement in specific capacitance (Csp) and voltammetric response of the MnO2 nanowire-based electrodes has been quite limited. This is attributed to the poor electrical conductivity of MnO2 and its dense bulk morphology due to the aggregation of the nanowires. This study investigated the capacitive performance of MnO2 nanowires electrodeposited on agarose thin films. The good ionic conductivity and porous network of the agarose film provided favorable growth conditions for the MnO2 nanowires with suppressed aggregation. A maximum Csp value of 686 F/g measured at a scan rate of 10 mV/s was obtained, which was significantly larger than that of 314 F/g for the agarose-free MnO2 electrode at the same scan rate. The rate capability was also improved. The Csp measured at a high scan rate of 100 mV/s retained 74.0% of the value measured at 10 mV/s, superior to the retention of 71.1% for the agarose-free MnO2 electrode.
Keywords
Pseudocapacitor; Manganese Oxide; Agarose Gel; Porous Network;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 X. Wang, C. E. Egan, M. Zhou, K. Prince, D. R. G. Mitchell, R. A. Caruso, Chem. Commun., 2007, 29, 3060-3062.
2 C. Ozdemir, A. Guner, Eur. Polym. J., 2007, 43(7), 3068-3093.   DOI
3 C. Duffus, P. J. Camp, A. J. Alexander, J. Am. Chem. Soc., 2009, 131(33), 11676-11677.   DOI
4 W. Moon, G. Kim, M. Lee, H. Song, J. Yi, ACS Appl. Mater. Interfaces, 2015, 7(6), 3503-3511.   DOI
5 N. Pernodet, M. Maaloum, B. Tinland, Electrophoresis, 1997, 18(1), 55-58.   DOI
6 E. E. Miller, Y. Hua, H. Tezel, J. Energy Storage, 2018, 20, 30-40.   DOI
7 M. Toupin, T. Brousse, D. Belanger, Chem. Mater., 2004, 16, 3184-3190.   DOI
8 S. Park, I. Nam, G-P. Kim, J. W. Han, J. Yi, ACS Appl. Mater. Interfaces, 2013, 5(20), 9908-9912.   DOI
9 M. A. Kandadai, J. L. Raymond, G. J. Shaw, Mater. Sci. Eng. C Mater. Biol. Appl., 2012, 32(8), 2664-2667.   DOI
10 L. T. C. Tuyen, S-R. Jian, N. T. Tien, P. H. Le, Mater., 2019, 12(10), 1665.   DOI
11 Poonam, K. Sharma, A. Arora, S. K. Tripathi, J. Energy Storage, 2019, 21, 801-825.   DOI
12 A. Gonzalez, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sustain. Energy Rev., 2016, 58, 1189-1206   DOI
13 G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev., 2012, 41(2), 797-828.   DOI
14 X. Peng, L. Peng, C. Wu, Y. Xie, Chem. Soc. Rev., 2014, 43(10), 3303-3323.   DOI
15 H. Le, S. Jin, S. Yim, J. Phys. Chem. Solids, 2020, 138, 109264.   DOI
16 K. Zhang, X. Han, Z. Hu, X. Zhang, Z. Tao, J. Chen, Chem. Soc. Rev., 2015, 44(3), 699-728.   DOI
17 I. Ryu, G. Kim, H. Yoon, S. Ahn, S. Yim, RSC Adv., 2016, 6(104), 102814-102820.   DOI
18 G. Kim, I. Ryu, S. Yim, Sci. Rep., 2017, 7, 8260.   DOI
19 W. Xiao, H. Xia, J. Y.H. Fuh, L. Lu, J. Power Sources, 2009, 193(2), 935-938.   DOI
20 S. O. Ranaei Siadat, J. Electrochem. Sci. Technol., 2015, 6(3), 81-87.   DOI
21 J. Wei, N. Nagarajan, I. Zhitomirsky, J. Mater. Process Technol., 2007, 186(1-3), 356-361.   DOI
22 S-K. Kamaraj, S. M. Romano, V. C. Moreno, H. M. Poggi-Varaldo, O. Solorza-Feria, Electrochim. Acta, 2015, 176, 555-566.   DOI
23 D. F. Vieira, C. O. Avellaneda, A. Pawlicka, Electrochim. Acta, 2007, 53(4), 1404-1408.   DOI
24 J. G. Clar, C. A. Silvera Batista, S. Youn, J-C. J. Bonzongo, K. J. Ziegler, J. Am. Chem. Soc., 2013, 135(47), 17758-17767.   DOI