Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00507

Potential Difference of Cyclic Polarization Curve of an Aircraft Al Alloy: ∆E (Esec,corr - Ecorr)  

Sun, Qingqing (Department of Mechanical and Energy Engineering, Southern University of Science and Technology)
Chen, Kanghua (State Key Laboratory of Powder Metallurgy, Central South University)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.2, 2020 , pp. 140-147 More about this Journal
Abstract
This paper presents a hypothesis and its experimental validation that ∆E (Esec,corr - Ecorr) of cyclic polarization curve of an Al-Zn-Mg-Cu alloy decreases firstly and then increases with the increasing of corrosion rate or corroded fraction Fcorr of alloy surface. The minimum value of ∆E is obtained when Fcorr ≈ 50%. In addition, a proportional relationship between ∆E and |50% - Fcorr| was found. This non-monotonic relation between ∆E and extent of localized corrosion indicates that additional attention should be paid on using ∆E to assess localized corrosion behaviour of Al-Zn-Mg-Cu alloys.
Keywords
7150 Al Alloy; Cyclic Polarization; Potential Difference; Localized Corrosion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Arrabal, B. Mingo, A. Pardo, M. Mohedano, E. Matykina, I. Rodriguez, Corros. Sci., 2013, 73, 342-355.   DOI
2 B. Wang, Y. Su, X. Mou, Y. Xiao, J. Liu, Mater. Des., 2013, 50, 15-21.   DOI
3 S. Chen, K. Chen, G. Peng, L. Jia, P. Dong, Mater. Des., 2012, 35, 93-98.   DOI
4 Q. Sun, Q. Han, R. Xu, K. Zhao, J. Li, Corros. Sci., 2018, 130, 218-230.   DOI
5 Q. Sun, R. Xu, Q. Han, K. Zhao, I. McAdams, W. Xu, Appl. Mater. Today, 2019, 14, 137-142.   DOI
6 S. S. Jamali, S. E. Moulton, D. E. Tallman, M. Forsyth, J. Weber, G. G. Wallace, Corros. Sci., 2014, 86, 93-100.   DOI
7 J. Izquierdo, S. Gonzalez, R. M. Souto, Int. J. Electrochem. Sci., 2012, 7, 11377-11388.
8 A. Maljusch, C. Senoz, M. Rohwerder, W. Schuhmann, Electrochim. Acta, 2012, 82, 339-348.   DOI
9 M. Rohwerder, and F. Turcu, Electrochim. Acta, 2007, 53(2), 290-299.
10 Q. Sun, X. Liu, Q. Han, J. Li, R. Xu, K. Zhao, Surf. Coat. Technol., 2018, 337, 552-560.   DOI
11 Q. Sun, Q. Han, X. Liu, W. Xu, J. Li, Surf. Coat. Technol., 2017, 328, 469-479.   DOI
12 Q. Sun, K. Chen, H. Fang, J. Xu, P. Dong, G. Hu, Q. Chen, Int. J. Electrochem. Sci., 2016, 11, 5855-5869.
13 B. Wilde, and E. Williams, Electrochim. Acta, 1971, 16(11), 1971-1985.   DOI
14 A. Broli, and H. Holtan, Corros. Sci., 1973, 13(4), 237-246.   DOI
15 A. Broli, and H. Holtan, Corros. Sci., 1977, 17(1), 59-69.   DOI
16 N. Nilsen, and E. Bardal, Corros. Sci., 1977, 17(8), 635-646.   DOI
17 M. Yasuda, F. Weinberg, D. Tromans, J. Electrochem. Soc., 1990, 137(12), 3708-3715.   DOI
18 M. Trueba, and S. P. Trasatti, Mater. Chem. Phys., 2010, 121(3), 523-533.   DOI
19 R. McGuire, and D. Silverman, Corrosion, 1991, 47(11), 894-902.   DOI
20 M. Dabala, K. Brunelli, E. Napolitani, M. Magrini, Surf. Coat. Technol., 2003, 172(2), 227-232.   DOI
21 E. Rosen, and D. Silverman, Corrosion, 1992, 48(9), 734-745.   DOI
22 U. Trdan, and J. Grum, Corros. Sci., 2012, 59, 324-333.   DOI
23 B. Zaid, D. Saidi, A. Benzaid, S. Hadji, Corros. Sci., 2008, 50(7), 1841-1847.   DOI
24 D. Silverman, Uhlig's Corrosion Handbook, Third Edition, 2011, 1129-1166.
25 D. C. Silverman, Tutorial on cyclic potentiodynamic polarization technique, NACE International, Houston, TX (United States), 1998.
26 D. C. Silverman, Uhlig's Corrosion Handbook, 2011, 1129-1166.
27 M. Finsgar, and I. Milosev, Corros. Sci., 2010, 52(7), 2430-2438.   DOI
28 A. Poursaee, Electrochim. Acta, 2010, 55(3), 1200-1206.   DOI
29 H. Leckie, J. Electrochem. Soc., 1970, 117(9), 1152-1154.   DOI
30 Q. Sun, J. Hu, J. Li, K. Chen, P. Dong, X. Liao, Y. Yang, Int. J. Electrochem. Sci., 2017, 12, 5363-5377.