Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00423

Li2S-Incorporated Separator for Achieving High-Energy-Density Li-S Batteries  

Park, Jong Won (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education)
Kang, Jukyoung (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education)
Koh, Jeong Yoon (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education)
Caron, Arnaud (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education)
Kim, Seok (School of Chemical and Biomolecular Engineering, Pusan National University)
Jung, Yongju (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.1, 2020 , pp. 33-40 More about this Journal
Abstract
We present a new and facile design of a high-performance Li-S cell by integrating a Li2S-impregnated glass fiber separator together with a common sulfur cathode. We find that a considerable amount of Li2S is consumed amidst the first charge, and most of Li2S disappears at the end of the second charge. During the charge process, additional sulfur material is formed and contributes to a significant enhancement of the discharge capacity (~1400 mAh/g), compared with a control cell (~1260 mAh/g) without Li2S. Moreover, the Li2S containing cell exhibits much higher cycling stability (a 31% increase from ~840 to ~1100 mAh/g in the 100th cycle) and rate capability (a 30% increase from ~580 to ~750 mAh/g at 2 C) than the control cell. Our results indicate that adopting Li2S-containing separator is highly effective to improving the electrochemical performances of Li-S cells.
Keywords
Li-S Battery; $Li_2s$-Incorporated Separator; High Energy Density; High Capacity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H.-J. Peng, J.-Q. Huang, X.-B. Cheng and Q. Zhang, Adv. Energy Mater., 2017, 7(24), 1700260.   DOI
2 J. Y. Koh, M.-S. Park, E. H. Kim, B. O. Jeong, S. Kim, K. J. Kim, J.-G. Kim, Y.-J. Kim and Y. Jung, J. Electrochem. Soc., 2014, 161(14), A2133-A2137.   DOI
3 T. J. Kim, J. Y. Koh, H. J. Yang and Y. Jung, Bull. Korean Chem. Soc., 2016, 37(2), 148-153.   DOI
4 Y. Yang, G. Zheng, S. Misra, J. Nelson, M. F. Toney and Y. Cui, J. Am. Chem. Soc., 2012, 134(37), 15387-15394.   DOI
5 D. Li, F. Han, S. Wang, F. Cheng, Q. Sun and W.-C. Li, ACS Appl. Mater. Inter., 2013, 5(6), 2208-2213.   DOI
6 A. Manthiram, Y. Fu, S.-H. Chung, C. Zu and Y.-S. Su, Chem. Rev., 2014, 114(23), 11751-11787.   DOI
7 S. Chu and A. Majumdar, Nature, 2012, 488(7411), 294-303.   DOI
8 N. Nitta, F. Wu, J. T. Lee and G. Yushin, Mater. Today, 2015, 18(5), 252-264.   DOI
9 P. G. Bruce, S. A. Freunberger, L. J. Hardwick and J.-M. Tarascon, Nat. Mater., 2012, 11(1), 19-29.   DOI
10 X. Fang and H. Peng, Small, 2014, 11(13), 1488-1511.   DOI
11 J. Xiao, Adv. Energy Mater., 2015, 5(16), 1501102.   DOI
12 S.-H. Chung and A. Manthiram, ChemSusChem, 2014, 7(6), 1655-1661.   DOI
13 M. Rao, W. Li and E. J. Cairns, Electrochem. Commun., 2012, 17, 1-5.   DOI
14 Y.-S. Su and A. Manthiram, Nat. Commun., 2012, 3(1), 1166.   DOI
15 R. Singhal, S.-H. Chung, A. Manthiram and V. Kalra, J. Mater. Chem. A, 2015, 3(8), 4530-4538.   DOI
16 X. Yu, S. Feng, M. J. Boyer, M. Lee, R. C. Ferrier Jr., N. A. Lynd, G. S. Hwang, G. Wang, S. Swinnea and A. Manthiram, Mater. Today Energy, 2018, 7, 98-104.   DOI
17 L. Shi, F. Zeng, X. Cheng, K. H. Lam, W. Wang, A. Wang, Z. Jin, F. Wu and Y. Yang, Chem. Eng. J., 2018, 334, 305-312.   DOI
18 M. Hagen, S. Dorfler, P. Fanz, T. Berger, R. Speck, J. Tubke, H. Althues, M. J. Hoffmann, C. Scherr and S. Kaskel, J. Power Sources, 2013, 224, 260-268.   DOI
19 Z. Yuan, H.-J. Peng, J.-Q. Huang, X.-Y. Liu, D.-W. Wang, X.-B. Cheng and Q. Zhang, Adv. Funct. Mater., 2014, 24(39), 6105-6112.   DOI
20 G. Zhou, L. Li, C. Ma, S. Wang, Y. Shi, N. Koratkar, W. Ren, F. Li and H.-M. Cheng, Nano Energy, 2015, 11, 356-365.   DOI
21 G. Zhou, E. Paek, G. S. Hwang and A. Manthiram, Nat. Commun., 2015, 6(1), 7760.   DOI
22 Z. Wei Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P.-C. Hsu and Y. Cui, Nat. Commun., 2013, 4(1), 1331-1336.   DOI
23 Y. Li, K. "Kelvin" Fu, C. Chen, W. Luo, T. Gao, S. Xu, J. Dai, G. Pastel, Y. Wang, B. Liu, J. Song, Y. Chen, C. Yang and L. Hu, ACS Nano, 2017, 11(5), 4801-4807.   DOI
24 X. Wang, T. Gao, F. Han, Z. Ma, Z. Zhang, J. Li and C. Wang, Nano Energy, 2016, 30, 700-708.   DOI
25 M. D. Patel, E. Cha, C. Kang, B. Gwalani and W. Choi, Carbon, 2017, 118, 120-126.   DOI