Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00080

Modified Glassy Carbon Electrode with Silver Nanoparticles/Polyaniline/Reduced Graphene Oxide Nanocomposite for the Simultaneous Determination of Biocompounds in Biological Fluids  

Ghanbari, Kh. (Department of Chemistry, Faculty of physics and chemistry, Alzahra University)
Moloudi, M. (Department of Chemistry, Faculty of physics and chemistry, Alzahra University)
Bonyadi, S. (Department of Chemistry, Faculty of physics and chemistry, Alzahra University)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.4, 2019 , pp. 361-372 More about this Journal
Abstract
The silver nanoparticles/polyaniline/reduced graphene oxide nanocomposite modified glassy carbon electrode (Ag/PANI/RGO/GCE) was prepared by the electrochemical method. The Ag/PANI/RGO nanocomposite was characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, X-ray diffraction (XRD), and electrochemical impedance spectroscopy (ESI). Two electrochemical techniques namely differential pulse voltammetry (DPV) and cyclic voltammetry (CV) were used to the electrochemical behaviors investigation of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The Ag/PANI/RGO/GCE exhibited remarkable electrocatalytic activity towards the oxidation reaction of AA, DA, and UA in Britton-Robinson (BR) solution (pH=4.0). Under the optimal conditions, the determinations of AA, DA, and UA were accomplished using DPV. AA-DA and DA-UA peak potential separations were 130 and 180 mV, respectively. For simultaneous detection, the linear response ranges were in the two concentration ranges of 0.05-0.8 mM and 2.0-16.0 mM with detection limit 0.412 μM (S/N = 3) for AA, 0.7-90.0 μM and 90.0-1000.0 μM with detection limit 0.023 μM (S/N = 3) for DA, and 0.8-70.0 μM and 70.0-1000.0 μM with detection limit 0.050 μM (S/N = 3) for UA. This modified electrode showed good sensitivity, selectivity, and stability with applied to determine AA, DA, and UA in human urine and drug.
Keywords
Ag Nanoparticles; Graphene Oxide; Ascorbic Acid; Dopamine; Uric Acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. A. Kumar, V. Lakshminarayanan, S. S. Ramamurthy, C. R. Chimie, 2019, 22(1), 58-72.   DOI
2 M.D. Tezerjani, A. Benvidi, A. Dehghani Firouzabadi, M. Mazloum-Ardakani, A. Akbari, Measurement, 2017, 101, 183-189.   DOI
3 L. Yang, D. Liu, J. Huang, T. You, Sens. Actuators B, 2014, 193, 166-172.   DOI
4 R. M. Wightman, L. J. May, A. C. Michael, Anal. Chem., 1988, 60(13), 769A-793A.   DOI
5 S. Immanuel, T.K. Aparna, R.Sivasubramanian, Surf. Interfaces, 2019, 14, 82-91.   DOI
6 M.D. Rubianes, G.A. Rivas, Anal. Chim. Acta, 2001, 440(2), 99-108.   DOI
7 A. Domenech, H. Garca, M.T. Domenech-Carbo, M.S. Galletero, Anal. Chem., 2002, 74(3), 562-569.   DOI
8 W. Choi, I. Lahiri, R. Seelaboyina and Y. S. Kang, C. Rev, Solid State Mater. Sci., 2010, 35(1), 52-71.
9 A Z. Miao, P. Wang, A. Zhong, M. Yang, Q. Xu, S. Hao, X. Hu, J. Electranal. Chem., 2015, 756, 153-160.   DOI
10 J. N. Chazalviel and P. Allongue, J. Am. Chem. Soc., 2010, 133(4), 762-764.   DOI
11 P. Paulraj, N. Janaki, S. Sandhya, K. Pandian, Colloids Surf. A, 2011, 377(1-3), 28-34.   DOI
12 C. Wang, J. Du, H. Wang, C. Zou, F. Jang, P. Yang, Y. Du, Sens. Actuators B, 2014, 204, 302-309.   DOI
13 X. Niu, W. Yang, H. Guo, J. Ren, F. Yang, J. Gao, Talanta, 2012, 99, 984-988.   DOI
14 H. Yang, J. Zhao, M. Qiu, P. Sun, D. Han, L. Niu, G. Cui, Biosens. Bioelectron., 2019, 124-125, 191-198.   DOI
15 L. Yang, D. Liu, J. Hung, T. You, Sens. Actuators B, 2014, 193, 166-172.   DOI
16 C. Zou, J. Zhong, S. Li, H. Wang, J. Wang, B. Yan, Y. Du, J. Electranal. Chem., 2017, 805, 110-119.   DOI
17 B. Kaur, T. Pandiyan, B. Satpati, R. Srivastava, Colloids Surf. B, 2013, 111, 97-106.   DOI
18 Y. He, S. Su, T. T. Xu, Y. L. Zhong, J. A. Zapien, J. Li, C. H. Fan and S. T. Lee, Nano Today, 2011, 6(2), 122-130.   DOI
19 M. Wang, M. Cui, W. Liu, X. Liu, J. Electranal. Chem., 2019, 832, 174-181.   DOI
20 Kh. Ghanbari, N. Hajheidari, Anal. Biochem., 2015, 473, 53-62.   DOI
21 Kh. Ghanbari, S. Bonyadi, New J. Chem., 2018, 42(11), 8512-8523.   DOI
22 Kh. Ghanbari, Synth. Met., 2014, 195, 234-240.   DOI
23 I. K. Moon, J. Lee, R. S. Ruoff, H. Lee, Nat. Commun., 2010, 1, 73-79.   DOI
24 J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, F. Wei, Carbon, 2010, 48(2), 487-493.   DOI
25 C. Chen, L. Wang, G. Jiang, J. Zhou, X. Chen, H. Yu, Nanotechnology, 2006, 17(15), 3933-3938.   DOI
26 S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruo, Nature, 2006, 442(7100), 282-286.   DOI
27 S. Thiagarajan, S-M. Chen, Talanta, 2007, 74(2), 212-222.   DOI
28 Y. Bao, J. Song, Y. Mao, D. Han, F. Yang, L. Niu, A. Ivaska, Electroanalysis, 2011, 23(4), 878-884.   DOI