Browse > Article
http://dx.doi.org/10.5229/JECST.2019.10.1.61

Electrodeposition of SnO2-doped ZnO Films onto FTO Glass  

Yoo, Hyeonseok (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University)
Park, Jiyoung (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University)
Kim, Yong-Tae (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University)
Kim, Sunkyu (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University)
Choi, Jinsub (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.1, 2019 , pp. 61-68 More about this Journal
Abstract
Well aligned $SnO_2$-doped ZnO nanorods were prepared by single step or 2-step electrochemical depositions in a mixture solution of zinc nitrate hexahydrate, ammonium hydroxide solution and 0.1 M tin chloride pentahydrate. The morphologies of electrochemically deposited $SnO_2$-doped ZnO were transformed from plain (or network) structures at low reduction potential to needles on hills at high reduction potential. Well aligned ZnO was prepared at intermediate potential ranges. Reduction reagent and a high concentration of Zn precursor were required to fabricate $SnO_2$ doped ZnO nanorods. When compared to results obtained by single step electrochemical deposition, 2-step electrochemical deposition produced a much higher density of nanorods, which was ascribed to less potential being required for nucleation of nanorods by the second-step electrochemical deposition because the surface was activated in the first-step. Mechanisms of $SnO_2$ doped ZnO nanorods prepared at single step or 2-step was described in terms of applied potential ranges and mass-/charge- limited transfer.
Keywords
Deposition; Nanostructured materials; Electrochemistry; Composites;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. G. Van de Walle, Phys. Rev. Lett. 2000, 85(5), 1012.   DOI
2 Z. B. Fang, Z. J. Yan and Y. S. Tan, Appl. Surf. Sci. 2005, 241(3-4), 303-308.   DOI
3 Z. K. Tang, G. K. L. Wong and P. Yu, Appl. Phys. Lett. 1998, 72(25), 3270-3272.   DOI
4 H. S. Kang, J. S. Kang and J. W. Kim, J. Appl. Phys. 2004, 95(3), 1246-1250.   DOI
5 Z. L. Wang, Appl. Phys. A-Mater. 2007, 88(1), 7-15.   DOI
6 S. Chakrabarti and B. K. J. Dutta, Hazard. Mater. 2004, 112(3), 269-278.   DOI
7 Q. Zhang, C. S. Dandeneau and X. Zhou, Adv. Mater. 2009, 21(41), 4087-4108.   DOI
8 W. J. E. Beek, M. M. Wienk and R. A. J. Janssen, Adv. Mater. 2004, 16(12), 1009-1013.   DOI
9 J. Q. Xu, Q. Y. Pan and Y. A. Shun, Sensor. Actuat. BChem. 2000, 66(1-3), 277-279.   DOI
10 T. Kong, Y. Chen and Y. Ye, Sensor. Actuat. B-Chem. 2009, 138(1), 344-350.   DOI
11 B. D. Yao, Y. F. Chan and N. Wang, Appl. Phys. Lett. 2002, 81(4), 757-759.   DOI
12 P. F. Carcia, R. S. McLean and M. H. Reilly, Appl. Phys. Lett. 2002, 82(7), 1117-1119.   DOI
13 J. J. Wu and S. C. Liu, Adv. Mater. 2002, 14(3), 215-218.   DOI
14 Y. Natsume and H. Sakata, Thin Solid Films 2000, 372(1-2), 30-36.   DOI
15 M. Li, J. Zhai and H. Liu, J. Phys. Chem. B 2003, 107(37), 9954-9957.   DOI
16 T. Yoshida and H. Minoura, Adv. Mater. 2000, 12(16), 1219-1222.   DOI
17 J. Park, K. Kim and J. Choi, Curr. Appl. Phys. 2013, 13(7), 1370-1375.   DOI
18 Y. Kim, J. Park and J. Choi, Electrochim. Acta 2012, 78, 417-421.   DOI
19 E. Comini, C. Baratto and G. Faglia, Prog. Mater. Sci. 2009, 54(1), 1-67.   DOI
20 B. Cheng and E. T. Samulski, Chem. Commun. 2004, 8, 986-987.
21 S. Y. Bae, C. W. Na and J. H. Kang, J. Phys. Chem. B 2005, 109(7), 2526-2531.   DOI
22 A. Ohtomo, K. Tamura and K. Saikusa, Appl. Phys. Lett. 1999, 75(17), 2635-2637.   DOI
23 M. Tzolov, N. Tzenov and D. Dimova-Malinovska, Thin Solid Films 2000, 379(1-2), 28-36.   DOI
24 M. Peiteado, Y. Iglesias and J. F. Fernandez, Mater. Chem. Phys. 2007, 101(1), 1-6.   DOI
25 F. J. Sheini, M. A. More and S. R. J. Jadkar, J. Phys. Chem. C 2010, 114(9), 3843-3849.   DOI
26 M. Ahmad, S. Yingying and H. J. Sun, Solid State Chem. 2012, 196, 326-331.   DOI
27 N. Ye, J. Qi and Z. Qi, J. Power Sources 2010, 195(17), 5806-5809.   DOI
28 W. Plieth Electrochemistry for Materials Science, Elsevier, Oxford, U.K, 2008.
29 S. Jiao, K. Zhang and S. Bai, Electrochim. Acta 2013, 111, 64-70.   DOI
30 Z. Chen, S. Li and W. Zhang, J. Alloys Compd. 2013, 557, 274-278.   DOI
31 Y. Salhi, S. Cherrouf, M. Cherkaoui and K. Abdelouahdi, Electrochim. Acta 2016, 367, 64-69.