Browse > Article
http://dx.doi.org/10.5229/JECST.2018.9.2.99

Effect of Electrolyte Concentration Difference on Hydrogen Production during PEM Electrolysis  

Sun, Cheng-Wei (Dept. of Mechanical Engineering, National Central University)
Hsiau, Shu-San (Dept. of Mechanical Engineering, National Central University)
Publication Information
Journal of Electrochemical Science and Technology / v.9, no.2, 2018 , pp. 99-108 More about this Journal
Abstract
Proton exchange membrane (PEM) water electrolysis systems offer several advantages over traditional technologies including higher energy efficiency, higher production rates, and more compact design. In this study, all the experiments were performed with a self-designed PEM electrolyser operated at 1 atm and $25^{\circ}C$. Two types of electrolyte were used: (i) potassium hydroxide (KOH), and (ii) sulfuric acid ($H_2SO_4$). In the experiments, the voltage, current, and time were measured. The concentration of the electrolyte significantly affected the electrolyser performance. Overall the best case was with 15 wt% $H_2SO_4$ at the anode channel and 20 wt% at the cathode channel with. In addition, increasing the difference in concentration of the sulfuric acid had an effect on the diffusion. The diffusion flux became larger when the difference in concentration became larger, increasing electrolyser efficiency without the addition of extra energy.
Keywords
Proton exchange membrane electrolyser; Electrolysis; Electrolyte; Diffusion; Difference in concentration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. Ulleberg, Int. J. of Hydrogen Energy, 2003, 28(1), 21-33.   DOI
2 R. L. LeRoy, C. T. Bowen, and D. J. LeRoy, J. Electrochem. Soc., 1980, 127, 1954-1962.   DOI
3 J. Nie, Y. Chen, R. F. Boehm, and S. Katukota, J. Heat Transfer, 2008, 130, 1-6.
4 T. Ioroi, K. Yasuda, Z. Siroma, N. Fjuiwara, and Y. Miyazaki, J. Power Sources, 2001, 112(2), 583-587.   DOI
5 P. Millet, F. Andolfatto, and R. Durand, Int. J. Hydrogen Energy, 1996, 21(2), 87-93.   DOI
6 H. Cheng, K. Scott, and C. Ramshaw, J. Electrochem. Soc., 2002, 149(11), D172-D177.   DOI
7 S. A. Grigoriev, V. I. Porembsky, and V. N. Fateev, Int. J. Hydrogen Energy, 2006, 31(2), 171-175.   DOI
8 F. Marangio, M. Santarelli, and M. Cali, Int. J. Hydrogen Energy, 2009, 34(93), 1143-1158.   DOI
9 P. Sivasubramanian, R. P. Ramasamy, F. J. Freire, C. E. Holland, and J. W. Weidner, Int. J. Hydrogen Energy, 2007, 32(4), 463-468.   DOI
10 A. Marshall, B. Borresen, G. Hagen, M. Tsypkin, and R. Tunold, Energy, 2005, 32(4), 431-436.   DOI
11 K. Onda, T. Kyakuno, K. Hattori, and K. Ito, J. Power Sources, 2004, 132(1-2), 64-70.   DOI
12 Diogo M. F. Santos and Cesar A. C. Sequeira, Quim. Nova, 2013, 36(8), 1176-1193.   DOI
13 R. A. Rozendal, H. V. M. Hamelers, R. J. Molenkamp, and C. J. N. Buisman, Water Research, 2007, 41(9), 1984-1994.   DOI
14 R. A. Rozendal, T. H. J. A. Sleutels, H. V. M. Hamelers, and C. J. N. Buisman, Water Science & Technology, 2008, 57(11), 1757-1762.   DOI
15 M. D. Merrill, B. E. Logan, J. Power Sources, 2009, 191(2), 203-208.   DOI
16 M. Macka, P. Andersson, and P. R. Haddad, Anal. Chem., 1998, 70(4), 743-749.   DOI
17 D. Kiuchi, H. Matsushima, Y. Fukunaka, and K. Kuribayashi, J. Electrochem. Soc., 2006, 153(8), E138-E143.   DOI
18 P. J. Sides, C. W. Tobias, J. Electrochem. Soc., 1980, 127, 288-291.   DOI
19 G. Kreysa, H. J. Kulps, J. Electrochem. Soc., 1981, 128(5), 979-984.   DOI
20 Biswajit Mandal, Amalesh Sirkar, Parameswar De, and Sunil Baran Kuila, International Journal of Research in Engineering and Technology, 2016, 05, 8-12.
21 Fumihiro Kodera, Yu Kuwahara, Akira Nakazawa, and Minoru Umeda, J. Power Sources, 2007, 172(2), 698-703.   DOI
22 C. Y. Wen, Y. S. Lin, and C. H. Lu, J. Power Sources, 2009, 192(2), 475-485.   DOI
23 Z. Qi, A. Kaufman, J. Power Sources, 2002, 111(1), 181-184.   DOI
24 US Fuel Cell Council, Single Cell Test Protocol, US Fuel Cell Council, 2006.