Browse > Article
http://dx.doi.org/10.5229/JECST.2018.9.2.85

Development of LiFePO4/FePO4 Electrode for Electro-Osmotic Pump using Li+ Migration  

Baek, Jaewook (Department of Chemistry, Sogang University)
Kim, Kyeonghyeon (Department of Chemistry, Sogang University)
Shin, Woonsup (Department of Chemistry, Sogang University)
Publication Information
Journal of Electrochemical Science and Technology / v.9, no.2, 2018 , pp. 85-92 More about this Journal
Abstract
Olivine structure of $LiFePO_4$ (LFP) is one of the most commonly used materials in aqueous rechargeable lithium batteries (ARLBs), and can store and release charge through the insertion/de-insertion of $Li^+$ between LFP and FP. We have fabricated LFP and LFP/FP electrodes on titanium paper and studied their electrochemical properties in 2 M $Li_2SO_4$. The LFP/FP electrode was determined to be a suitable electrode for electo-ostmotic pump (EOP) in terms of efficiency in water and 0.5 mM $Li_2SO_4$ solution. Experiments to determine the effect of cations and anions on the performance of EOP using LFP/FP electrode have shown that $Li^+$ is the best cation and that the anion does not significantly affect the performance of the EOP. As the concentration of $Li_2SO_4$ solution was increased, the current increased. The flow rate peaked at $4.8{\mu}L/30s$ in 1.0 mM $Li_2SO_4$ solution and then decreased. When the EOP was tested continuously in 1.0 mM $Li_2SO_4$ solution, the EOP transported approximately 35 mL of fluid while maintaining a stable flow rate and current for 144 h.
Keywords
Electro-osmotic pump (EOP); Aqueous rechargeable lithium-ion battery (ARLB); Lithium iron phosphate (LFP); Electrode; Lithium ion ($Li^+$);
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. J. Hunter, In Zeta Potential in Colloid Science, Academic Press: 1981.
2 S. Yao, J. G. Santiago, J. Coll. Interf. Sci., 2003, 268(1), 133-142.   DOI
3 W. Shin, J. M. Lee, R. K. Nagarale, S. J. Shin, A. Heller, J. Am. Chem. Soc., 2011, 133(8), 2374-2377.   DOI
4 W. Shin, E. Zhu, R. K. Nagarale, C. H. Kim, J. M. Lee, S. J. Shin, A. Heller, Anal. Chem., 2011, 83(12), 5023-5025.   DOI
5 K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mater. Res. Bull., 1980, 15(6), 783-789.   DOI
6 R. Yazami, P. Touzain, J. Power Sources, 1983, 9(3), 365-371.   DOI
7 A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc., 1997, 144(4), 1188-1194.   DOI
8 Z. Chen, J. R. Dahn, J. Electrochem. Soc., 2002, 149(9), A1184-A1189.   DOI
9 J. Song, B. Sun, H. Liu, Z. Ma, Z. Chen, G. Shao, G. Wang, ACS Appl. Mater. Interf., 2016, 8(24), 15225-15231.   DOI
10 H. Manjunatha, T. V. Venkatesha, G. S. Suresh, Electrochim. Acta, 2011, 58, 247-257.   DOI
11 Y. Hou, X. Wang, Y. Zhu, C. Hu, Z. Chang, Y. Wu, R. Holze, J. Mater. Chem. A, 2013, 1(46), 14713-14718.   DOI
12 N. Yesibolati, N. Umirov, A. Koishybay, M. Omarova, I. Kurmanbayeva, Y. Zhang, Y. Zhao, Z. Bakenov, Electrochim. Acta, 2015, 152, 505-511.   DOI
13 X. Zeng, Q. Liu, M. Chen, L. Leng, T. Shu, L. Du, H. Song, S. Liao, Electrochim. Acta, 2015, 177, 277-282.   DOI
14 N. Alias, A. A. Mohamad, J. Power Sources, 2015, 274, 237-251.   DOI
15 H. D. B. Jenkins, K. P. Thakur, J. Chem. Edu., 1979, 56(9), 576.   DOI