Browse > Article
http://dx.doi.org/10.5229/JECST.2018.9.2.126

Novel P(VDF-TrFE) Polymer Electrolytes: Their Use in High-Efficiency, All-Solid-State Electrochemical Capacitors Using ZnO Nanowires  

Park, Young Jun (DMC R&D center, Samsung Electronics Co., Ltd.)
Bae, Joonho (Department of Nano-physics, Gachon University)
Publication Information
Journal of Electrochemical Science and Technology / v.9, no.2, 2018 , pp. 126-132 More about this Journal
Abstract
For the first time, an innovative approach using P(VDF-TrFE) as a polymer electrolyte for high efficiency, all-solid-state supercapacitors is presented. The polymer electrolyte was successfully achieved by dissolving P(VDF-TrFE) copolymers in dimethylformamide (DMF). Thermal analysis and infrared spectroscopy revealed excellent thermal stability up to $400^{\circ}C$ and copolymer's interaction with DMF. Electrochemical capacitors fabricated using P(VDF-TrFE) in DMF and ZnO NWs demonstrated high capacitive performance. Furthermore, the gel electrolyte-based supercapacitors demonstrated excellent mechanical durability up to a bend angle of $120^{\circ}$. Novel P(VDF-TrFE) electrolytes could be a promising approach for applications in flexible, fabric-based, and high-efficiency energy devices.
Keywords
P(VDF-TrFE); Polymer electrolyte; Supercapacitors; ZnO; Nanowires;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D.-W. Kim, J.-H. Kim, J.-N. Kim, H.-J. Park, H.-S. Jeon, and B.-E. Park, Integr. Ferroelectr, 2008, 98(1), 121-127.   DOI
2 H. Kawai, Jap. J. Appl. Phys, 1969, 8(7), 975.   DOI
3 Z. H. Liu, C. T. Pan, L. W. Lin, J. C. Huang, and Z. Y. Ou, Smart Mater. Struct, 2014, 23(2), 11.
4 B. Li, A. J. Laviage, J. H. You, and Y. J. Kim, Appl. Acoust, 2013, 74(11), 1271-1278.   DOI
5 J. G. Bergman, Appl. Phys. Lett, 1971, 18(5), 203-205.   DOI
6 S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, Nat Mater, 2010, 9(8), 643.   DOI
7 E. Schaffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, Nature, 2000, 403(6772), 874.   DOI
8 J.P. Southall, H.V. St. A. Hubbard, S.F. Johnston, V. Rogers, G.R. Davies, J.E. McIntyre, and I.M. Ward, SOLID STATE IONICS, 1996, 85(1-4), 51-60.   DOI
9 P. C. Chen, G. Shen, S. Sukcharoenchoke, and C. Zhou, Appl. Phys. Lett, 2009, 94, 043113.   DOI
10 X. L. Wu, L. Y. Jiang, F. F. Cao, Y. G. Guo, and L. J. Wan, Adv. Mater, 2009, 21(25-26), 2710-2714.   DOI
11 N. Li, Y. Xiao, C.Z. Xu, Huihui Li, and Xiaodi Yang, Int. J. Electrochem. Sci., 2013, 8, 1181-1188.
12 C. Yuan, X. Zhang, Q. Wu, and B. Gao, SOLID STATE IONICS, 2006, 177(13-14), 1237-1242.   DOI
13 K. Tashiro, in Ferroelectric polymers chemistry, physics, and applications, edited by Hari Singh Nalwa (Marcel Dekker, Inc, New York, (1995), pp. 63.
14 Bruce E. Gnade and Manuel A. Quevedo-Lopez Duo Mao, in Ferroelectrics - Physical Effects, edited by Micka Lallart (InTech, 2011), pp. 77.
15 M. Forsyth, P.M. Meakin, and D.R. MacFarlane, Electrochim. Acta, 1995, 40(13-14), 2339-2342.   DOI
16 S.F. Johnston, I.M. Ward, J. Cruickshank, and G.R. Davies, SOLID STATE IONICS, 1996, 90(1-4), 39-48.   DOI
17 Z. Wang, B. Huang, Z. Lu, S. Wang, R. Xue, and L. Chen, SOLID STATE IONICS, 1996, 92(3-4), 265-271.   DOI
18 H. Akashi, K.-I. Tanaka, and K. Sekai, J. Electrochem. Soc., 1998, 145(3), 881-887.   DOI
19 R. S. Kuhnel, N. Bockenfeld, S. Passerini, M. Winter, and A. Balducci, Electrochim. Acta, 2011, 56(11), 4092-4099.   DOI
20 M.M.E. Jacob and A.K. Arof, Electrochim. Acta, 2000, 45(10), 1701-1706.   DOI
21 N. M. Reynolds, K. J. Kim, C. Chang, and S. L. Hsu, Macromolecules, 1989, 22(3), 1092-1100.   DOI
22 E. Frackowiak and F. Beguin, Carbon, 2001, 39(6), 937-950.   DOI
23 H. Park and T. H. Han, B. Kor. Chem. Soc., 2013, 34(11), 3269-3273.   DOI