Browse > Article
http://dx.doi.org/10.5229/JECST.2018.9.1.37

Experimental Study on Four Cation Exchange Membranes in Electrosynthesis of Ammonium Persulfate  

Wang, Chao (College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology)
Zhou, Junbo (College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology)
Gao, Liping (College of Biochemical Engineering, Beijing Union University)
Publication Information
Journal of Electrochemical Science and Technology / v.9, no.1, 2018 , pp. 37-43 More about this Journal
Abstract
In order to improve current efficiency and decrease energy consumption in the electrosynthesis of ammonium persulfate, electrolytic properties of four cation exchange membranes, namely, the $JCM-II^{(R)}$ membrane, $Nafion^{(R)}$ 324 membrane CMI-$7000^{(R)}$ membrane and a self-made perfluorosulfonic ion exchange membrane (PGN membrane) were investigated using a sintered platinized titanium anode and a Pb-Sb-Sn alloy cathode in a self-made electrolytic cell. The effect of cell voltage and electrolyte flow rate on the current efficiency and the energy consumption were investigated. The results indicated that the PGN membrane could improve current efficiency to 94.85% and decrease energy consumption to $1119kWh\;t^{-1}$ (energy consumption per ton of the ammonium persulfate generated) under the optimal operating conditions and the highest current efficiency of the $JCM-II^{(R)}$ membrane, $Nafion^{(R)}$ 324 membrane and CMI-$7000^{(R)}$ membrane were 80.73%, 77.76% and 73.22% with their lowest energy consumption of $1323kWh\;t^{-1}$, $1539kWh\;t^{-1}$ and $2256kWh\;t^{-1}$, respectively. The PGN membrane has the advantages of high current efficiency and energy power consumption and has sufficient mechanical strength with the reinforced mesh. Therefore the PGN membrane will has good value in popularization in the industrial electrosynthesis of ammonium persulfate in the future.
Keywords
Electrosynthesis; Ammonium persulfate; Current efficiency; Energy consumption; PGN membrane;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J.R. Davis, J.C. Baygents, J.Farrell, Electrochim. Acta, 2014, 150, 68-74.   DOI
2 G. Dutta, H. Yang, J. Electrochem. Sci. Technol., 2016, 7(1), 27-32.   DOI
3 J. Ran, L. Wu, Y.B. He, et al, J. Membr. Sci, 2017, 522, 267-291.   DOI
4 E. Bakangura, C. Cheng, L. Wu, et al., J. Membr. Sci, 2017, 537, 32-41.   DOI
5 G.A. Crespo, Electrochim. Acta, 2017, 245, 1023 -1034.   DOI
6 S. Paul, J. Electrochem. Sci. Technol, 2016, 7(2), 115-131.   DOI
7 R.S.L. Yee, R.A. Rozendal, K. Zhang, et al., Chem. Eng. Res. Des., 2012, 90(7), 950-959.   DOI
8 J.R. Davis, J.C. Baygents, J.Farrell, J. Appl. Electrochem., 2014, 44(7), 841-848.   DOI
9 J. Zhu, K.K. Hii, K. Hellgardt, Acs Sustain. Chem. Eng, 2016, 4(4), 2027-2036.   DOI
10 H. Strathmann, A.Grabowski, G.Eigenberger, Ind. Eng. Chem. Res, 2013, 52(31), 10364-10379.   DOI
11 J. Zhao, P. Sun, L. Wang, et al., J. Zhengzhou Univ.(Engineering. Science), 2006, 27, 109-112.
12 Y. Wang, Y. Xiong, J. Zhang, J. Southeast Univ., 2015, 45, 738-744.
13 H. Nan, Y. Wang, Chem. Ind. Eng., 2013, 30, 53-58.
14 CONG, Yu-feng, et al., J. Fushun Petroleum Ins., 2001, 21, 23-31.
15 L.R. Bennedsen, In situ chemical oxidation: The Mechanisms and Applications of Chemical Oxidants for Remediation Purposes, Elsevier B.V., Amsterdam, 2014.
16 R.L. Johnson, P.G. Tratnyek, R.O. Johnson, Environ. Sci. Technol, 2008, 42(24), 9350-9356.   DOI
17 M. Nemati, S.M. Hosseini, M. Shabanianb, J. Hazard. Mater., 2017, 337, 90-104.   DOI
18 S.M. Hosseini, M. Nemati, F. Jeddi, et al., Desalination, 2015, 359, 167-175.   DOI
19 H. Jakob, S. Leininger, T. Lehmann, et al., Peroxo Compounds, Inorganic. Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2007.
20 N. Xu, Guangdong Chem. Ind. (Natural Science Edition), 2015, 42, 114-114.
21 K.K. Hii, K.Hellgardt, G.H.Kelsall, et al, Apparatus and method for production of oxidants, WO/2016/193738A1.
22 V.B. Martos, E. Herrero, J.M. Feliu, Electrochim. Acta, 2017, 241, 497-509.   DOI