Browse > Article
http://dx.doi.org/10.5229/JECST.2017.8.3.244

Analysis of the Singular Point of Cyclic Voltammograms Recorded with Various Scan Rates  

Chang, Byoung-Yong (Department of Chemistry, Pukyong National University)
Publication Information
Journal of Electrochemical Science and Technology / v.8, no.3, 2017 , pp. 244-249 More about this Journal
Abstract
This paper presents the results of an investigation into the isoamperic point of cyclic voltammograms, which is defined as the singular point where the voltammograms of various scan rates converge. The origin of the unique point is first considered from a theoretical perspective by formulating the voltammetric curves as a system of linear equations, the solution of which indicates that a trivial solution is only available at the potential at which the net current is zero during the reverse potential scan. In addition, by way of a mathematical formulation, it was also shown that the isoamperic point is dependent on the switching potential of the potential scanning. To validate these findings, theoretical and practical cyclic voltammmograms were studied using finite-element based digital simulations and 3-electrode cell experiments. The new understanding of the nature of the isoamperic point provides an opportunity to measure the charge transfer effects without the influence of the mass transfer effects when determining the thermodynamic and kinetic characteristics of a faradaic system.
Keywords
Cyclic voltammogram; Theoretical electrochemistry; Finite element simulation;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 John W. Moore, Ralph G. Pearson, Kinetics and Mechanism, 3rd Ed., Wiley, 1981, 48-51.
2 M. Greger, M. Kollar and D. Vollhardt, Physical Review B, 2013, 87(19), 195140.   DOI
3 H.J. Cleaves, Isoelectric Point In Encyclopedia of Astrobiology, Springer Berlin Heidelberg, (2011) 858-859.
4 B. Bjellqvist, G.J. Hughes, C. Pasquali, N. Paquet, F. Ravier, J.-C. Sanchez, S. Frutiger and D. Hochstrasser, ELECTROPHORESIS, 1993, 14(1), 1023-1031.   DOI
5 M. Son, D. Kim, J. Kang, J.H. Lim, S.H. Lee, H.J. Ko, S. Hong and T.H. Park, Analytical Chemistry, 2016, 88(23), 11283-11287.   DOI
6 D. Midgley, Analyst, 1987, 112(5), 573-579.   DOI
7 D. Midgley, Analyst, 1987, 112(5), 581-585.   DOI
8 S. Hong, H. Jo and S.-W. Song, J. Electrochem. Sci. Technol., 2015, 6, 116-120.   DOI
9 S.O.R. Siadat, J. Electrochem. Sci. Technol, 2015, 6(4), 111-115.   DOI
10 I. Kang, W.-S. Shin, S. Manivannan, Y. Seo and K. Kim, J. Electrochem. Sci. Technol, 2016, 7, 277-285.   DOI
11 A.F.T. Auguste, G.C. Quand-Meme, K. Ollo, B. Mohamed, S.S. placide, S. Ibrahima and O. Lassine, J. Electrochem. Sci. Technol., 2016, 7(1), 82-89.   DOI
12 B.-Y. Chang, J. Electrochem. Sci. Technol., 2016, 6, 146-151.
13 S.-H. Oh and B.-Y. Chang, J. Electrochem. Sci. Technol., 2016, 7, 293-297.   DOI
14 R.S. Nicholson and I. Shain, Analytical Chemistry, 1964, 36(4), 706-723.   DOI
15 S.-H. Kang, S.-Y. Lee, J.-H. Kim, C.-J. Choi, H. Kim and K.-S. Ahn, J. Electrochem. Sci. Technol., 2016, 7, 52-57.   DOI
16 M. Aliaghayee, H.G. Fard and A. Zandi, J. Electrochem. Sci. Technol., 2016, 7, 218-227.   DOI
17 E.K. Park and J.W. Yun, J. Electrochem. Sci. Technol., 2016, 7, 33-40.   DOI
18 S. Bhadra, D.S.Y. Tan, D.J. Thomson, M.S. Freund and G.E. Bridges, IEEE Sensors Journal., 2013, 13(6), 2428-2436.   DOI