Browse > Article
http://dx.doi.org/10.5229/JECST.2017.8.1.61

Facile Synthesis of M-MOF-74 (M=Co, Ni, Zn) and its Application as an ElectroCatalyst for Electrochemical CO2 Conversion and H2 Production  

Choi, Insoo (Fuel Cell Research Center, Korea Institute of Science and Technology)
Jung, Yoo Eil (Department of Energy and Chemical Engineering, Incheon National University)
Yoo, Sung Jong (Fuel Cell Research Center, Korea Institute of Science and Technology)
Kim, Jin Young (Fuel Cell Research Center, Korea Institute of Science and Technology)
Kim, Hyoung-Juhn (Fuel Cell Research Center, Korea Institute of Science and Technology)
Lee, Chang Yeon (Department of Energy and Chemical Engineering, Incheon National University)
Jang, Jong Hyun (Fuel Cell Research Center, Korea Institute of Science and Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.8, no.1, 2017 , pp. 61-68 More about this Journal
Abstract
Electrochemical conversion of $CO_2$ and production of $H_2$ were attempted on a three-dimensionally ordered, porous metal organic framework (MOF-74) in which transition metals (Co, Ni, and Zn) were impregnated. A lab-scale proton exchange membrane-based electrolyzer was fabricated and used for the reduction of $CO_2$. Real-time gas chromatography enabled the instantaneous measurement of the amount of carbon monoxide and hydrogen produced. Comprehensive calculations, based on electrochemical measurements and gaseous product analysis, presented a time-dependent selectivity of the produced gases. M-MOF-74 samples with different central metals were successfully obtained because of the simple synthetic process. It was revealed that Co- and Ni-MOF-74 selectively produce hydrogen gas, while Zn-MOF-74 successfully generates a mixture of carbon monoxide and hydrogen. The results indicated that M-MOF-74 can be used as an electrocatalyst to selectively convert $CO_2$ into useful chemicals.
Keywords
Electrochemical conversion; $CO_2$; $H_2$; Metal organic framework; Catalyst;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E.J. Popczun, C.G. Read, C.W. Roske, N.S. Lewis, R.E. Schaak, Angew. Chem, 2014, 126 (21) 5531-5534.   DOI
2 S.H. Ahn, S.J. Hwang, S.J. Yoo, I. Choi, H-J. Kim, J.H. Jang, S.W. Nam, T-H. Lim, T. Lim, S-K. Kim, J.J. Kim, J. Mater. Chem, 2012, 22(30), 15153-15159.   DOI
3 M. Gong, D-Y. Wang, C-C. Chen, B-J. Hwang, H. Dai, Nano Res, 2016, 9(1), 28-46.   DOI
4 Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim. Acta, 1994, 39(11-12), 1833-1839.   DOI
5 K. Hara, A. Kudo, T. Sakata, J. Electroanal. Chem, 1995, 391(1-2), 141-147.   DOI
6 C. Zhang, S.Y. Hwang, Z. Peng, J. Mater. Chem, 2013, A 1(45), 14402-14408.
7 E. M. Sherif, Molecules, 2014, 19(7), 9962-9974.   DOI
8 Y. Chen, C.W. Li, M.W. Kanan, J. Am. Chem. Soc, 2012, 134(49), 19969-19972.   DOI
9 I. Hod, M.D. Sampson, P. Deria, C.P. Kubiak, O.K. Farha, J.T. Hupp, ACS Catal, 2015, 5 (11), 6302-6309.   DOI
10 N. Kornienko, Y. Zhao, C.S. Kley, C. Zhu, D. Kim, S. Lin, C.J. Chang, O.M. Yaghi, Peidong Yang, J. Am. Chem. Soc, 2015, 137(44), 14129-14135.   DOI
11 R.S. Kumar, S.S. Kumar, M.A. Kulandainathan, Electrochem. Commun, 2012, 25, 70-73.   DOI
12 R. Hinogami, S. Yotsuhashi, M. Deguchi, Y. Zenitani, H. Hashiba, Y. Yamada, ECS Electrochem. Lett, 2012, 1(4), H17-H19.   DOI
13 X. Dai, M. Liu, Z. Li, A. Jin, Y. Ma, X. Huang, H. Sun, H. Wang, X. Zhang, J. Phys. Chem.C, 2016, 120 (23), 12539-12548.   DOI
14 W. Guo, H. Lv, Z. Chen, K.P. Sullivan, S.M. Lauinger, Y. Chi, J.M. Sumliner, T. Lian, C.L. Hill, J. Mater. Chem. A, 2016, 4 (16), 5952-5957.   DOI
15 J.A. Mason, K. Sumida, Z.R. Herm, R. Krishna, J.R. Long, Energy Environ. Sci, 2011, 4 (8) 3030-3040.   DOI
16 D-A. Yang, H-Y. Cho, J. Kim, S-T. Yang, W-S. Ahn, Energy Environ. Sci, 2012, 5(4), 6465-6473.   DOI
17 H. Wu, W. Zhou, T. Yildirim, J. Am. Chem. Soc, 2009, 131(13) 4995-5000.   DOI
18 S.R. Caskey, A.G. Wong-Foy, A.J. Matzger, J. Am. Chem. Soc, 2008, 130(33) 10870-10871.   DOI
19 J.L.C. Rowsell, O.M. Yaghi, J. Am. Chem. Soc, 2006, 128(4), 1304-1315.   DOI
20 B. Gole, U. Sanyal, R. Banerjee, P.S. Mukherjee, Inorg. Chem, 2016, 55(5), 2345-2354.   DOI
21 J. Zhu, M. Xiao, Y. Zhang, Z. Jin, Z. Peng, C. Liu, S. Chen, J. Ge, W. Xing, ACS Catalm 2016, 6(10), 6335-6342.   DOI
22 R. Liang, F. Jing, L. Shen, N. Qin, L. Wu, Nano Res, 2015, 8(10), 3237-3249.   DOI
23 H-Y. Kim, I. Choi, S.H. Ahn, S.J. Hwang, S.J. Yoo, J. Han, J. Kim, H. Park, J.H. Jang, S-K. Kim, Int. J. Hydrogen Energ, 2014, 39(29), 16506-16512.   DOI
24 J.L. DiMeglio, J. Rosenthal, J. Am. Chem. Soc, 2013, 135(24), 8798-8801.   DOI
25 A.A. Peterson, J.K. Norskov, Phys. Chem. Lett, 2012, 3(2), 251-258.   DOI
26 S. Zhang, P. Kang, T.J. Meyer, J. Am. Chem. Soc, 2014, 136(5), 1734-1737.   DOI
27 S.R. Narayanan, B. Haines, J. Soler, T.I. Valdez, J. Electrochem. Soc, 2011, 158(2), A167-A173.   DOI
28 M. Alvarez-Guerra, S. Quintanilla, A. Irabien, Chem. Eng. J, 2012, 207, 278-284.
29 B.A. Rosen, A. Salehi-Khojin, M.R. Thorson, W. Zhu, D.T. Whipple, P.J. A. Kenis, R.I. Masel, Science, 2011, 334 (6056) 643-644.   DOI
30 Y. Chen, C.W. Li, M.W. Kanan, J. Am. Chem. Soc, 2012, 134(49), 19969-19972.   DOI
31 W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, S. Sun, J. Am. Chem. Soc, 2013, 135(45), 16833-16836.   DOI
32 D. Ren, Y. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi, B.S. Yeo, ACS Catal, 2015, 5 (5), 2814-2821.   DOI
33 Y. Hori, in: C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco, (Eds.) Modern Aspects of Electrochemistry no. 42, Springer, New York, 2008, pp. 89-189.
34 S. Kuwabata, R. Tsuda, H. Yoneyama, J. Am. Chem. Soc, 1994, 116 (12), 5437-5443.   DOI
35 K. Sugimura, S. Kuwabata. H. Yoneyama, J. Am. Chem. Soc, 1989, 111 (6), 2361-2362.   DOI
36 H.A. Hansen, J.B. Varley, A.A. Peterson, J.K. Norskov, J. Phys. Chem. Lett, 2013, 4(3) 388-392.   DOI
37 P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, A. Schreiber and T.E. Muller, Energy Environ. Sci, 2002, 5(6), 7281-7305.   DOI
38 K.M.K. Yu, I. Curcic, J. Gabriel, S.C.E. Tsang, ChemSusChem, 2010, 3(6), 644-644.   DOI
39 M. Peters, B. Kohler, W. Kuckshinrichs, W. Leitner, P. Markewitz, T.E. Muller, ChemSusChem, 2011, 4(9), 1216-1240.   DOI
40 I. Ganesh, Renew. Sustainable Energy Rev, 2014, 31, 221-257.   DOI
41 A.S. Hawkins, P.M. McTernan, H. Lian, R.M. Kelly, M.WW. Adams, Curr. Opin. Biotechnol, 2013, 24(3), 376-384.   DOI
42 Zhai, Q., Xie, S., Fan, W., Zhang, Q., Wang, Y., Deng, W., & Wang, Y, Angew. Chem, 2013, 125(22), 5888-5891.   DOI
43 S.C. Roy, O.K. Varghese, M. Paulose, C.A. Grimes, ACS Nano, 2010, 4(3), 1259-1278.   DOI
44 K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard, T.F. Jaramillo, J. Am. Chem. Soc, 2014, 136(40), 14107-14113.   DOI
45 C. Costentin, M. Roberta, J-M. Saveant, Chem. Soc. Rev, 2013, 42(6), 2423-2436.   DOI
46 C.M. Pradier, in: J. Paul, C.M. Pradier (Eds.), Carbon Dioxide Chemistry: Environmental Issues, The Royal Soc. Chem., Cambridge,, UK, 1994, pp. 3-4.