Browse > Article
http://dx.doi.org/10.5229/JECST.2016.7.4.306

Amorphous Vanadium Titanates as a Negative Electrode for Lithium-ion Batteries  

Lee, Jeong Beom (Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University)
Chae, Oh. B. (Battery R&D, LG Chem. Research Park, LG Chem. Ltd.)
Chae, Seulki (Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University)
Ryu, Ji Heon (Graduate School of Knowledge-based Technology and Energy, Korea Polytechnic University)
Oh, Seung M. (Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University)
Publication Information
Journal of Electrochemical Science and Technology / v.7, no.4, 2016 , pp. 306-315 More about this Journal
Abstract
Amorphous vanadium titanates (aVTOs) are examined for use as a negative electrode in lithium-ion batteries. These amorphous mixed oxides are synthesized in nanosized particles (<100 nm) and flocculated to form secondary particles. The $V^{5+}$ ions in aVTO are found to occupy tetrahedral sites, whereas the $Ti^{4+}$ ions show fivefold coordination. Both are uniformly dispersed at the atomic scale in the amorphous oxide matrix, which has abundant structural defects. The first reversible capacity of an aVTO electrode ($295mAhg^{-1}$) is larger than that observed for a physically mixed electrode (1:2 $aV_2O_5$ | $aTiO_2$, $245mAhg^{-1}$). The discrepancy seems to be due to the unique four-coordinated $V^{5+}$ ions in aVTO, which either are more electron-accepting or generate more structural defects that serve as $Li^+$ storage sites. Coin-type Li/aVTO cells show a large irreversible capacity in the first cycle. When they are prepared under nitrogen (aVTO-N), the population of surface hydroxyl groups is greatly reduced. These groups irreversibly produce highly resistive inorganic compounds (LiOH and $Li_2O$), leading to increased irreversible capacity and electrode resistance. As a result, the material prepared under nitrogen shows higher Coulombic efficiency and rate capability.
Keywords
Amorphous metal oxides; Lithium-ion batteries; X-ray absorption fine structure (XAFS); Surface hydroxyl groups; Electrochemistry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Adv. Mater., 1998, 10(10), 725-763.   DOI
2 J.-M. Tarascon, M. Armand, Nature., 2001, 414(6861), 359-367.   DOI
3 T.H. Kim, J.S. Park, S.K. Chang, S. Choi, J.H. Ryu, H.K. Song, Adv. Energy Mater., 2012, 2(7), 860-872.   DOI
4 T. Ohzuku, T. Kodama, T. Hirai, J. Power Sources., 1985, 14(1), 153-166.   DOI
5 K.M. Colbow, J.R. Dahn, R.R. Haering, J. Power Sources., 1989, 26(3-4), 397-402.   DOI
6 T. Ohzuku, J. Electrochem. Soc., 1995, 142(5), 1431-1435.   DOI
7 R. Inada, K. Shibukawa, C. Masada, Y. Nakanishi, Y. Sakurai, J. Power Sources., 2014, 253, 181-186.   DOI
8 L. Kavan, K. Kratochvilová, M. Gratzel, J. Electroanal. Chem., 1995, 394(1), 93-102.   DOI
9 L. Kavan, M. Gratzel, J. Rathouskyb, A. Zukalba, J. Electrochem. Soc., 1996, 143(2), 394-400.   DOI
10 M.S. Balogun, C. Li, Y. Zeng, M. Yu, Q. Wu, M. Wu, X. Lu, Y. Tong, J. Power Sources., 2014, 272, 946-953.   DOI
11 U. Lafont, C. D., G. Mountjoy, A. V. Chadwick, E.M. Kelder, J. Phys. Chem. C., 2010, 114(2), 1372-1378.   DOI
12 M. Wagemaker, W.J.H. Borghols, E.R.H. Van Eck, A.P.M. Kentgens, G.J. Kearley, F.M. Mulder, Chem. - A Eur. J., 2007, 13(7), 2023-2028.   DOI
13 J.S. Chen, X.W. Lou, J. Power Sources., 2010, 195(9), 2905-2908.   DOI
14 Y. Ren, Z. Liu, F. Pourpoint, A.R. Armstrong, C.P. Grey, P.G. Bruce, Angew. Chemie - Int. Ed., 2012, 51(9), 2164-2167.   DOI
15 Q. Wu, J. Xu, X. Yang, F. Lu, S. He, J. Yang, H.J. Fan, M. Wu, Adv. Energy Mater., 2015, 5, 1401756.   DOI
16 W. Li, F. Wang, Y. Liu, J. Wang, J. Yang, L. Zhang, A.A. Elzatahry, D. Al-Dahyan, Y. Xia, D. Zhao, Nano Lett., 2015, 15(3), 2186-2193.   DOI
17 H. Liu, W. Li, D. Shen, D. Zhao, G. Wang, J. Am. Chem. Soc., 2015, 137(40), 13161-13166.   DOI
18 W.J.H. Borghols, D. Lu?tzenkirchen-Hecht, U. Haake, W. Chan, U. Lafont, E.M. Kelder, E.R.H. van Eck, A.P.M. Kentgens, F.M. Mulder, M. Wagemaker, J. Electrochem. Soc., 2010, 157(5), A582-A588.   DOI
19 O.B. Chae, J. Kim, I. Park, H. Jeong, J.H. Ku, J.H. Ryu, K. Kang, S.M. Oh, Chem. Mater., 2014, 26(20), 5874-5881.   DOI
20 J.H. Ku, J.H. Ryu, S.H. Kim, O.H. Han, S.M. Oh, Adv. Funct. Mater., 2012, 22(17), 3658-3664.   DOI
21 J. Jang, S.-M. Kim, Y. Kim, K.H. Park, J.H. Ku, J.H. Ryu, S.M. Oh, Isr. J. Chem., 2015, 55(5), 604-610.   DOI
22 J. Dahn, T. Zheng, Y. Liu, J. Xue, Science, 1995, 270(5236), 590.   DOI
23 C.W. Park, S.H. Yoon, S.I. Lee, S.M. Oh, Carbon, 2000, 38(7), 995-1001.   DOI
24 H. Xiong, M. Slater, J. Phys. Chem. Lett., 2011, 2(20), 2560-2565.   DOI
25 Y. Fang, L. Xiao, J. Qian, X. Ai, H. Yang, Y. Cao, Nano Lett., 2014, 14(6), 3539-3543.   DOI
26 S. Hamaguchi, H. Yoshitake, Electrochemistry, 2009, 77(5), 373-378.   DOI
27 M. Hibino, K. Abe, M. Mochizuki, M. Miyayama, J. Power Sources., 2004, 126(1), 139-143.   DOI
28 C. Delmas, S. Brethes, J. Power Sources., 1991, 34(2), 113-118.   DOI
29 C. Delmas, J.M. Cocciantelli, J.P. Doumerc, Solid State Ionics., 1994, 69(3-4), 257-264.   DOI
30 Q. An, F. Lv, Q. Liu, C. Han, K. Zhao, J. Sheng, Q. Wei, M. Yan, L. Mai, Nano Lett. 2014, 14(11), 6250-6256.   DOI
31 C. Niu, M. Huang, P. Wang, J. Meng, X. Liu, X. Wang, K. Zhao, Y. Yu, Y. Wu, C. Lin, L. Mai, Nano Res. 2016, 9(1), 128-138.   DOI
32 H. Hirashima, S. Kamimura, R. Muratake, T. Yoshida, J. Non. Cryst. Solids., 1988, 100(1-3), 394-398.   DOI
33 Y. Wei, J. Zhou, J. Zheng, C. Xu, Electrochim. Acta., 2015, 166, 277-284.   DOI
34 J. Wong, F. Lytle, R. Messmer, Phys. Rev. B., 1984, 30(10), 5596.   DOI
35 S. Södergren, H. Siegbahn, H. Rensmo, H. Lindström, A. Hagfeldt, S.-E. Lindquist, J. Phys. Chem. B., 1997, 101(16), 3087-3090.   DOI
36 K. Tasaki, A. Goldberg, J.-J. Lian, M. Walker, A. Timmons, S.J. Harris, J. Electrochem. Soc. 2009, 156(12), A1019-A1027.   DOI
37 L.R. Pizzio, Mater. Lett. 2005, 59(8), 994-997.   DOI
38 Tsunehiro Tanaka, H. Yamashita, R. Tsuchitani, T. Funabiki, S. Yoshida, J. Chem. Soc. Faraday Trans., 1988, 84(9), 2987-2999.   DOI
39 H. Jie, H. Park, K.-B. Lee, H.-J. Chang, J.-P. Ahn, J.-K. Park, Surf. Interface Anal. 2012, 44(11-12), 1449-1452   DOI
40 Z.Y. Wu, G. Ouvrard, P. Gressier, C.R. Natoli, Phys. Rev. B., 1997, 55(16), 10382.   DOI
41 F. Farges, G. Brown, J. Rehr, Phys. Rev. B., 1997, 56(4), 1809-1819.   DOI
42 H. Yoshitake, T. Sugihara, T. Tatsumi, Phys. Chem. Chem. Phys., 2003, 5(4), 767-772.   DOI
43 J.-Y. Shin, D. Samuelis, J. Maier, Adv. Funct. Mater., 2011, 21(18), 3464-3472.   DOI
44 H. Kawai, M. Nagata, H. Kageyama, H. Tukamoto, A.R. West, Electrochim. Acta, 1999, 45(1), 315-327.   DOI
45 F.-M. Wang, J. Rick, Solid State Ionics, 2014, 268, 31-34.   DOI
46 G. Salek, B. Bellanger, I. Mjejri, M. Gaudon, A. Rougier, Inorg. Chem., 2016, 55(19), 9838-9847.   DOI
47 B. Siemensmeyer, J. Schultze, Surf. Interface Anal., 1990, 16, 309-314.   DOI
48 P. Verma, P. Maire, P. Novak, Electrochim. Acta, 2010, 55(22), 6332-6341.   DOI
49 R. Dedryvere, S. Laruelle, S. Grugeon, L. Gireaud, J.-M. Tarascon, D. Gonbeau, J. Electrochem. Soc., 2005, 152(4), A689-A696.   DOI
50 K.E. Swider-Lyons, C.T. Love, D.R. Rolison, Solid State Ionics, 2002, 152, 99-104.
51 S. Klosek, D. Raftery, J. Phys. Chem. B., 2001, 105(14), 2815-2819.   DOI