Browse > Article
http://dx.doi.org/10.5229/JECST.2016.7.2.161

Electrodeposited Porous Tungsten Oxides as Anode Materials for Lithium Secondary Batteries  

Lee, Du-Young (School of Materials Science and Engineering, Pusan National University)
Choi, Woo-Sung (School of Materials Science and Engineering, Pusan National University)
Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University)
Publication Information
Journal of Electrochemical Science and Technology / v.7, no.2, 2016 , pp. 161-169 More about this Journal
Abstract
Porous tungsten oxide thin films were prepared by electrodeposition and tested as anodes of lithium secondary batteries. The synthesized films were composed of nanoparticles of 60-140 nm size, with porosities of 30-40 %. Increasing the temperature turned out to be a more effective approach to introduce porosity in the structure than increasing the electrolyte viscosity. The assessment of the synthesized films as anodes of lithium secondary batteries revealed a much higher initial discharge capacity for the porous than the dense samples. The discharge capacity retention significantly increased with increasing porosity and was further enhanced by heat treatment. In particular, a thin film composed of particles of about 140 nm in size and with a porosity of 40 % exhibited an initial discharge capacity higher than 600 mAh/g and a remaining capacity above 300 mAh/g after 30 cycles. Following heat treatment, the remaining capacity of this sample after 30 cycles increased to about 500 mA h/g.
Keywords
Porous thin film; Tungsten oxide; Electrodeposition; Lithium secondary battery;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J.-M. Tarascon and M. Armand, Nature, 2001, 414, 359-367.   DOI
2 B. A. Boukamp, G. C. Lesh and R. A. Huggins, J. Electrochem. Soc., 1981, 128, 725-729.   DOI
3 J. B. Goodenough and Y. Kim, J. Power Sources, 2011, 196, 6688-6694.   DOI
4 N.-S. Choi, S.-Y. Ha, Y. Lee, J. Y. Jang, M.-H. Jeong, W. C. Shin, M. Ue, J. Electrochem. Sci. Technol., 2015, 6, 35-49.   DOI
5 N. Kumagai, N. Kumagai, Y. Umetzu, K. Tanno, K. and J. P. Pereira-Ramos, Solid State Ionics, 1996, 86, 1443-1449.
6 W.-J. Li and Z.-W. Fu, Appl. Surf. Sci., 2010, 256, 2447-2452.   DOI
7 S. Yoon, C. Jo, S. Y. Noh, C. W. Lee, J. H. Song and J. Lee, Phys. Chem. Chem. Phys., 2011, 13, 11060-11066.   DOI
8 J.-W. Lee, W.-S. Choi, H.-C. Shin, Korean J. Mater. Res., 2013, 23, 680-686.   DOI
9 E. Salje and K. Viswanathan, Acta Cryst., 1975, A31, 356-359.
10 J. Jiang, Y. Li, J Liu, X. Huang, C. Yuan and X. W. D. Lou, Adv. Mater., 2012, 24, 5166-5180.   DOI
11 A. K. Srivastava, M. Deepa, S. Singh, R. Kishore and S. A. Agnihotry, Solid State Ionics, 2015, 176, 1161-1168.
12 Y. S. Kim, S.-C. Ha, K. Kim, H. Yang, S.-Y. Choi, Y. T. Kim, J. T. Park, C. H. Lee, J. Choi, J. Paek and K. Lee, Appl. Phys. Lett., 2005, 86, 213105.   DOI
13 A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S. Z. Deng, N. S. Xu, Y. Ding and Z. L. Wang, Appl. Phys. Lett., 2006, 88, 203101.   DOI
14 M. Deepa, A. K. Srivastava, S. N. Sharma and S. M. Shivaprasad, Appl. Surf. Sci., 2008, 254, 2342-2352.   DOI
15 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J.-M. Tarascon, Nature, 2000, 407, 496-499.   DOI
16 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J.-M. Tarascon, Ionics, 2000, 6, 321-330.   DOI
17 M. Dolle, P. Poizot, L. Dupont and J.-M. Tarascon, Electrochem. Solid-State Lett., 2002, 5, A18-A21.   DOI
18 Y.-S. Hu, L. Kienle, Y.-G. Guo, J. Maier, Adv. Mater., 2006, 18, 1421-1426.   DOI
19 F. Jiao and P. G. Bruce, Adv. Mater., 2007, 19, 657-660.   DOI
20 Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. S. Hu, K. R. Heier, L. Chen, R. Seshadri and G. D. Stucky, Nano Lett., 2009, 9, 4215-4220.   DOI
21 E. A. Meulenkamp, J. Electrochem. Soc., 1997, 144, 1664-1671.   DOI
22 T. A. Witten and L. M. Sander, Phys. Rev. Lett., 1981, 47, 1400-1401.   DOI
23 A. Fischer, J. Jindra and H. Wendt, J. Appl. Electrochem., 1998, 28, 277-282.   DOI
24 W.-S. Choi, S. Hwang, W. Chang and H.-C. Shin, J. Solid State Electrochem., 2016, 20, 345-352.   DOI
25 P. Meakin, J. Colloid Interface Sci., 1983, 96, 415-424.   DOI
26 H. Brune, C. Romainczyk, H. Roder and K. Kern, Nature, 1994, 369, 469-471.   DOI
27 J. C. Hill and K.-S. Choi, J. Phys. Chem. C, 2012, 116, 7612-7620.   DOI