Browse > Article
http://dx.doi.org/10.5229/JECST.2014.5.2.49

Catalytic Effects of Heteroatom-doped Graphene Nanosheets on the Performance of Li-O2 Batteries  

Bae, Youngjoon (Department of Materials Science and Engineering, Seoul National University)
Lim, Hee-Dae (Department of Materials Science and Engineering, Seoul National University)
Yun, Young Soo (Department of Materials Science and Engineering, Seoul National University)
Kang, Kisuk (Department of Materials Science and Engineering, Seoul National University)
Publication Information
Journal of Electrochemical Science and Technology / v.5, no.2, 2014 , pp. 49-52 More about this Journal
Abstract
Graphene nanosheets (GNS), nitrogen-doped graphene nanosheets (N-GNS), and sulfur-doped graphene nanosheets (S-GNS) were successfully synthesized, and their catalytic effects on the oxygen reduction reaction (ORR) in $Li-O_2$ batteries were compared. The S-GNS electrode exhibited the highest ORR catalytic activity, resulting in enhanced discharge capacity and power capability. We attributed the enhanced ORR catalytic activity to the increased defect sites on graphene.
Keywords
$Li-O_2$ batteries; graphene; doping; nanosheets; heteroatom;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Peng, S. A. Freunberger, L. J. Hardwick, Y. Chen, V. Giordani, F. Barde, P. Novak, D. Graham, J.-M. Tarascon and P. G. Bruce, Angew. Chem., 123, 6475 (2011).   DOI   ScienceOn
2 Y.-C. Lu, H. A. Gasteiger and Y. Shao-Horn, J. Am. Chem. Soc., 133, 19048 (2011).   DOI   ScienceOn
3 M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, Nano Lett., 8 (5), 3498 (2008).   DOI   ScienceOn
4 B. Sun, B. Wang, D. Su, L. Xiao, H. Ahn and G. Wang, Carbon, 50, 727 (2012).   DOI   ScienceOn
5 L. Qu, Y. Liu, J.-B. Baek and L. Dai, ACS Nano, 4 (3), 1321 (2010).   DOI   ScienceOn
6 Y. Shao, S. Zhang, M. H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I. A. Aksay and Y. Lin, J. Mater. Chem., 20, 7491 (2010).   DOI   ScienceOn
7 K. R. Lee, K. U. Lee, J. W. Lee, B. T. Ahn and S. I. Woo, Electrochem. Commun., 12, 1052 (2010).   DOI   ScienceOn
8 G. Wu, N. H. Mack, W. Gao, S. Ma, R. Zhong, J. Han, J. K. Baldwin and P. Zelenay, ACS Nano, 6, 9764 (2012).   DOI   ScienceOn
9 Y. Wang, Y. Shao, D. W. Matson, J. Li and Y. Lin, ACS Nano, 4, 1790 (2010).   DOI   ScienceOn
10 L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma and Z. Hu, Angew. Chem. Int. Ed., 50, 7132 (2011).   DOI   ScienceOn
11 W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).   DOI
12 A. M. Rao, P. C. Eklund, Shunji Bandow, A. Thess and R. E. Smalley, Nature, 388, 257 (1997).   DOI   ScienceOn
13 J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G. Graff, W. Bennett, Z. Nie, L. Saraf, I. Aksay, J. Liu and J.-G. Zhang, Nano Lett., 11, 5071 (2011).   DOI   ScienceOn
14 D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye and S. Knights, Energy Environ. Sci., 4, 760, (2011).   DOI   ScienceOn
15 K. M. Abraham and Z. Jiang, J. Electrochem. Soc., 143, 1 (1996).   DOI
16 P. G. Bruce, S. A. Freunberger, L. J. Hardwick and J.-M. Tarascon, Nat. Mater., 11, 19 (2012).
17 R. Black, S. H. Oh, J.-H. Lee, T. Yim, B. Adams and L. F. Nazar, J. Am. Chem. Soc., 134, 2902 (2012).   DOI   ScienceOn
18 Y. Li, J. Wang, X. Li, D. Geng, M. N. Banis, R. Li and X. Sun, Electrochem. Commun., 18, 12 (2012).   DOI   ScienceOn
19 L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu and J. Li, Adv. Funct. Mater., 19, 2782 (2009).   DOI   ScienceOn
20 S.-A. Wohlgemuth, R. J. White, M.-G. Willinger, M.-M. Titirici and M. Antonietti, Green Chem., 14, 1515 (2012).   DOI   ScienceOn