Browse > Article
http://dx.doi.org/10.5229/JECST.2013.4.4.146

Paper-Based Bipolar Electrochemistry  

Renault, Christophe (Department of Chemistry and the Center for Nano- and Molecular Science and Technology, The University of Texas at Austin)
Scida, Karen (Department of Chemistry and the Center for Nano- and Molecular Science and Technology, The University of Texas at Austin)
Knust, Kyle N. (Department of Chemistry and the Center for Nano- and Molecular Science and Technology, The University of Texas at Austin)
Fosdick, Stephen E. (Department of Chemistry and the Center for Nano- and Molecular Science and Technology, The University of Texas at Austin)
Crooks, Richard M. (Department of Chemistry and the Center for Nano- and Molecular Science and Technology, The University of Texas at Austin)
Publication Information
Journal of Electrochemical Science and Technology / v.4, no.4, 2013 , pp. 146-152 More about this Journal
Abstract
We demonstrate that carbon electrodes screen-printed directly on cellulose paper can be employed to perform bipolar electrochemistry. In addition, an array of 18 screen-printed bipolar electrodes (BPEs) can be simultaneously controlled using a single pair of driving electrodes. The electrochemical state of the BPEs is read-out using electrogenerated chemiluminescence. These results are important because they demonstrate the feasibility of coupling bipolar electrochemistry to microfluidic paperbased analytical devices (${\mu}PADs$) to perform highly multiplexed, low-cost measurements.
Keywords
Bipolar electrochemistry; Paper-based microfluidic analytical device; Electrogenerated chemiluminescence; Screen-printed electrode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chow, K.-F.; Mavre, F.; Crooks, R. M. Wireless Electrochemical DNA Microarray Sensor. J. Am. Chem. Soc., 130, 7544 (2008).   DOI   ScienceOn
2 Lu, Y.; Shi, W.; Jiang, L.; Qin, J.; Lin, B. Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis, 30, 1497 (2009).   DOI   ScienceOn
3 Carrilho, E.; Martinez, A. W.; Whitesides, G. M. Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics. Anal. Chem., 81, 7091 (2009).   DOI   ScienceOn
4 Deiss, F. d. r.; LaFratta, C. N.; Symer, M.; Blicharz, T. M.; Sojic, N.; Walt, D. R. Multiplexed Sandwich Immunoassays Using Electrochemiluminescence Imaging Resolved at the Single Bead Level. J. Am. Chem. Soc., 131, 6088 (2009).   DOI   ScienceOn
5 Sun, S.; Yang, Y.; Liu, F.; Pang, Y.; Fan, J.; Sun, L.; Peng, X. Study of Highly Efficient Bimetallic Ruthenium Trisbipyridyl ECL Labels for Coreactant System. Anal. Chem., 81, 10227 (2009).   DOI   ScienceOn
6 Mavre, F.; Chow, K.-F.; Sheridan, E.; Chang, B.-Y.; Crooks, J. A.; Crooks, R. M. A Theoretical and Experimental Framework for Understanding Electrogenerated Chemiluminescence (ECL) Emission at Bipolar Electrodes. Anal. Chem., 81, 6218 (2009).   DOI   ScienceOn
7 Martinez, A. W.; Phillips, S. T.; Butte, M. J.; Whitesides, G. M. Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays. Angew. Chem., Int. Ed., 46, 1318 (2007).   DOI   ScienceOn
8 Martinez, A. W.; Phillips, S. T.; Whitesides, G. M.; Carrilho, E. Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices. Anal. Chem., 82, 3 (2010)   DOI   ScienceOn
9 Parolo, C.; Merkoci, A. Paper-based nanobiosensors for diagnostics. Chem. Soc. Rev., 42, 450 (2013).   DOI   ScienceOn
10 Yetisen, A. K.; Akram, M. S.; Lowe, C. R. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip, 13, 2210 (2013).   DOI   ScienceOn
11 Li, X.; Ballerini, D. R.; Shen, W. A perspective on paperbased microfluidics: Current status and future trends. Biomicrofluidics, 6, 11301 (2012).   DOI   ScienceOn
12 Lewis, G. G.; DiTucci, M. J.; Phillips, S. T. Quantifying Analytes in Paper-Based Microfluidic Devices Without Using External Electronic Readers. Angew. Chem., Int. Ed., 51, 12707 (2012).   DOI   ScienceOn
13 Scida, K.; Li, B.; Ellington, A. D.; Crooks, R. M. DNA Detection Using Origami Paper Analytical Devices. Anal. Chem., 85, 9713 (2013).   DOI   ScienceOn
14 Dungchai, W.; Chailapakul, O.; Henry, C. S. Electrochemical Detection for Paper-Based Microfluidics. Anal. Chem., 81, 5821 (2009).   DOI   ScienceOn
15 Liu, H.; Xiang, Y.; Lu, Y.; Crooks, R. M. Aptamer-Based Origami Paper Analytical Device for Electrochemical Detection of Adenosine. Angew. Chem., Int. Ed., 51, 6925 (2012).   DOI   ScienceOn
16 Maxwell, J. E.; Mazzeo, A. D.; Whitesides, G. M. Paperbased electroanalytical devices for accessible diagnostic testing. MRS Bull., 38, 309 (2013).   DOI
17 Santhiago, M.; Wydallis, J. B.; Kubota, L. T.; Henry, C. S. Construction and Electrochemical Characterization of Microelectrodes for Improved Sensitivity in Paper-Based Analytical Devices. Anal. Chem., 85, 5233 (2013).   DOI   ScienceOn
18 Glatzel, S.; Schnepp, Z.; Giordano, C. From Paper to Structured Carbon Electrodes by Inkjet Printing. Angew. Chem., Int. Ed., 52, 2355 (2013).   DOI   ScienceOn
19 Tobjork, D.; Osterbacka, R. Paper electronics. Adv Mater, 23, 1935 (2011).   DOI   ScienceOn
20 Nie, Z.; Deiss, F.; Liu, X.; Akbulut, O.; Whitesides, G. M. Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip, 10, 3163 (2010).   DOI   ScienceOn
21 Wang, P.; Ge, L.; Yan, M.; Song, X.; Ge, S.; Yu, J. Paperbased three-dimensional electrochemical immunodevice based on multi-walled carbon nanotubes functionalized paper for sensitive point-of-care testing. Biosens. Bioelectron., 32, 238 (2012).   DOI   ScienceOn
22 Wu, Y.; Xue, P.; Kang, Y.; Hui, K. M. Paper-Based Microfluidic Electrochemical Immunodevice Integrated with Nanobioprobes onto Graphene Film for Ultrasensitive Multiplexed Detection of Cancer Biomarkers. Anal. Chem., 85, 8661 (2013).   DOI   ScienceOn
23 Delaney, J. L.; Hogan, C. F.; Tian, J.; Shen, W. Electrogenerated Chemiluminescence Detection in Paper-Based Microfluidic Sensors. Anal. Chem., 83, 1300 (2011).   DOI   ScienceOn
24 Fosdick, S. E.; Knust, K. N.; Scida, K.; Crooks, R. M. Bipolar Electrochemistry. Angew. Chem., Int. Ed., 52, 10438 (2013).   DOI   ScienceOn
25 Bradley, J.-C.; Ma, Z. Contactless Electrodeposition of Palladium Catalysts. Angew. Chem., Int. Ed., 38, 1663 (1999).   DOI
26 Chow, K.-F.; Mavre, F.; Crooks, J. A.; Chang, B.-Y.; Crooks, R. M. A Large-Scale, Wireless Electrochemical Bipolar Electrode Microarray. J. Am. Chem. Soc., 131, 8364 (2009).   DOI   ScienceOn
27 Fosdick, S. E.; Berglund, S. P.; Mullins, C. B.; Crooks, R. M. Parallel Screening of Electrocatalyst Candidates Using Bipolar Electrochemistry. Anal. Chem., 85, 2493 (2013).   DOI   ScienceOn
28 Mavre, F.; Anand, R. K.; Laws, D. R.; Chow, K.-F.; Chang, B.-Y.; Crooks, J. A.; Crooks, R. M. Bipolar Electrodes: A Useful Tool for Concentration, Separation, and Detection of Analytes in Microelectrochemical Systems. Anal. Chem., 82, 8766 (2010).   DOI   ScienceOn
29 Klett, O.; Nyholm, L. Separation High Voltage Field Driven On-Chip Amperometric Detection in Capillary Electrophoresis. Anal. Chem., 75, 1245 (2003).   DOI   ScienceOn
30 Ordeig, O.; Godino, N.; del Campo, J.; Munoz, F. X.; Nikolajeff, F.; Nyholm, L. On-Chip Electric Field Driven Electrochemical Detection Using a Poly(dimethylsiloxane) Microchannel with Gold Microband Electrodes. Anal. Chem., 80, 3622 (2008).   DOI   ScienceOn
31 Chow, K.-F.; Chang, B.-Y.; Zaccheo, B. A.; Mavre, F.; Crooks, R. M. A Sensing Platform Based on Electrodissolution of a Ag Bipolar Electrode. J. Am. Chem. Soc., 132, 9228 (2010).   DOI   ScienceOn
32 Fosdick, S. E.; Crooks, R. M. Bipolar Electrodes for Rapid Screening of Electrocatalysts. J. Am. Chem. Soc., 134, 863 (2011).
33 Zhan, W.; Crooks, R. M. Microelectrochemical Logic Circuits. J. Am. Chem. Soc., 125, 9934 (2003).   DOI   ScienceOn