Browse > Article
http://dx.doi.org/10.5229/JECST.2013.4.1.34

A Study on the Structural and Electrochemical Properties of Li0.99Ni0.46Mn1.56O4 Cathode Material Using Synchrotron based in-situ X-ray Diffraction  

Choi, Sol (Department Of Energy Science, Sungkyunkwan University)
Yoon, JeongBae (Department Of Energy Science, Sungkyunkwan University)
Muhammad, Shoaib (Department Of Energy Science, Sungkyunkwan University)
Yoon, Won-Sub (Department Of Energy Science, Sungkyunkwan University)
Publication Information
Journal of Electrochemical Science and Technology / v.4, no.1, 2013 , pp. 34-40 More about this Journal
Abstract
The structural and electrochemical properties of $Li_{0.99}Ni_{0.46}Mn_{1.56}O_4$ ($Fd{\bar{3}}m$, disordered spinel) cathode material were studied and compared with stoichiometric $LiNi_{0.5}Mn_{1.5}O_4$ ($P4_332$, ordered spinel). First cycle discharge capacity of $Li_{0.99}Ni_{0.46}Mn_{1.56}O_4$ was similar to that of $LiNi_{0.5}Mn_{1.5}O_4$ at C/3 and 1C rate, but cycling performance of $Li_{0.99}Ni_{0.46}Mn_{1.56}O_4$ was better than that of $LiNi_{0.5}Mn_{1.5}O_4$ especially at high rate of 1C. This can be explained by performing synchrotron based in-situ XRD and results of GITT measurements. It is considered that faster lithium ion diffusion in the $Li_{0.99}Ni_{0.46}Mn_{1.56}O_4$ cathode results in the improvement of the rate capability. To study structural changes during cycling, synchrotron in-situ XRD patterns of both the samples were recorded at C/3 and 1C rate. Compared to stoichiometric $LiNi_{0.5}Mn_{1.5}O_4$, disordered $Li_{0.99}Ni_{0.46}Mn_{1.56}O_4$ spinel sample has pseudo one phase behavior and one step phase transition between two cubic phases. So, $LiNi_{0.5}Mn_{1.5}O_4$ would experience a much greater strain and stress, originating from the two phase transitions between three cubic phases and suffer from capacity loss during cycling especially at high rate.
Keywords
Lithium ion battery; Cathode material; $LiNi_{0.5}Mn_{1.5}O_4$; $Li_{0.99}Ni_{0.46}Mn_{1.56}O_4$; In situ X-ray Diffraction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Ohzuku, S. Takeda and M. Iwanaga, J. Power Sources, 81-82, 90 (1999).   DOI   ScienceOn
2 K. Amine, H. Tukamoto, H. Yasuda and Y. Fujita, J. Electrochem. Soc., 143, 1607 (1996).   DOI   ScienceOn
3 A. N. Mansour, C. A. Melendres, J. Phys. Chem. A, 102, 65 (1998).   DOI   ScienceOn
4 S.-T. Myung, S. Komaba, N. Kumagai, H. Yashiro, H.-T Chung and T.-H. Cho, Electrochim. Acta, 47, 2543 (2002).   DOI   ScienceOn
5 M. Kunduraci, J. F. Al-Sharab and G. G. Amaucci, Chem. Mater., 18, 3585 (2006).   DOI   ScienceOn
6 Q-C. Zhuang, T. Wei, L-L. Du, Y-L. Cui, L. Fang and SG. Sun, J. Phys. Chem. C, 114, 8614 (2010).   DOI   ScienceOn
7 C. H. Chen, E. M. Kelder and J. Schoonman, J. Mat. Sci. Lett., 16, 1967 (1997).   DOI   ScienceOn
8 T. Yang, N. Zhang, Y. Lang and K. Sun, Electrochemica. Acta, 56, 4058 (2011).   DOI   ScienceOn
9 B. Markovsky, Y. Talyossef, G. Salitra and S. Choi, Electrochem. Commun., 6, 821 (2004).   DOI   ScienceOn
10 K. Y. Chung, H. S. Lee, W-S. Yoon, J. McBreen and XQ. Yang, J. Electrochem. Soc, 153, A774 (2006).   DOI   ScienceOn
11 S. H. Park, S-W. Oh, S. H. Kang, I. Belharouk, K. Amine and Y-K. Sun, Electrochemica Acta, 52, 7226 (2007).   DOI   ScienceOn
12 R. Santhanam and B. Rambabu, J. Power Sources, 195, 5442 (2010).   DOI   ScienceOn
13 K.mizushina, P. C. Jones, P. C. Wiseman and J. B. Goodenough, Mater. Res. Bull., 15, 783 (1980).   DOI   ScienceOn
14 K. Ozawa, Solid State Ionics, 69, 212 (1994).   DOI   ScienceOn
15 B. Huang, Y-I. Jang, Y-M. Chiang and D. R. Sadoway, J. Applied Electrochemistry, 28, 1365, (1998).   DOI   ScienceOn
16 R. J. Gummow, A. de Kock and M. M. Thackeray, Solid State Ionics, 69, 59, (1994).
17 D. I. Siapkas, C. L. Mitsas, I. Samaras and K. M. Paraskevopoulos, J. Power Sources, 72, 22, (1998).
18 M. M. Doeff, A. Anapolsky, L. Edman, T. J. Richardson and L. C. De Jonghe, J. Electrochemical Society, 148, A230, (2001).   DOI   ScienceOn
19 B. J. Hwang, R. Santhanam and S. G. Hu, J. Power Sources, 108, 250 (2002).   DOI   ScienceOn
20 I. Yamada, T. Abe, Y. Iriyama and Z. Ogumi, Electrochem. Commun., 5, 502 (2003).   DOI   ScienceOn
21 T. Ohzuku, M. Kitagawa and T. Hirai, J. Electrochem. Soc., 137, 769 (1990).   DOI
22 M. M. Thackeray, Prog. Solid State Chem. 1, 25 (1997).
23 S. Kobayashi, I. R. M. Kottegoda, Y. Uchimoto and M. Wakihara, J. Mater. Chem., 14, 1843 (2004).   DOI   ScienceOn
24 A. D. Pasquier, A. Blyr, P. Courjal, D. Larcher, G. Amatuuci, B. Gernand and J. M.Tarascon, J. Electrochem. Soc., 146, 428 (1999).   DOI   ScienceOn
25 F. K. Shokoohi, J. M. Tarascon and B. J. Wilkens, J. Appl. Phys., 59, 1260 (1991).
26 K. H. Hwang, S. H. Lee and S. K. Joo, J. Electrochem. Soc., 141, 3296 (1994).   DOI   ScienceOn
27 S. H. Park, K. S. Park, Y. K. Sun and K. S. Nahm, J. Electrochem.Soc., 147, 2116 (2000).   DOI   ScienceOn
28 D. H. Jang, Y. J. Shin and S. M. Oh, J. Electrochem.Soc., 143, 2204 (1996).   DOI   ScienceOn
29 Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao and J. R. Dahn, J. Electrochem. Soc., 144, 205 (1997).   DOI   ScienceOn