Browse > Article
http://dx.doi.org/10.5229/JECST.2012.3.2.68

Highly Laminated Electrospun ZnO Nanofibrous Film on the Transparent Conducting Oxide for Photovoltaic Device  

Kim, Jinsoo (Department of Materials Science and Engineering, Seoul National University)
Yoon, Sanghoon (Department of Materials Science and Engineering, KAIST)
Yoo, Jung-Keun (Department of Materials Science and Engineering, KAIST)
Kim, Jongsoon (Department of Materials Science and Engineering, Seoul National University)
Kim, Haegyeom (Department of Materials Science and Engineering, Seoul National University)
Kang, Kisuk (Department of Materials Science and Engineering, Seoul National University)
Publication Information
Journal of Electrochemical Science and Technology / v.3, no.2, 2012 , pp. 68-71 More about this Journal
Abstract
The electrospinning technique is a revolutionary template-catalyst-free method that can generate 1D nanostructure with the tunability and the potential for the mass production. This approach received a great deal of attention due to its ability to give direct pathways for electrical current and has been utilized in various electronic applications. However, the delamination of inorganic electrospun film has prevented the intense utilization due to the thermal expansion/contraction during the calcination. In this study, we propose an electrical grounding method for transparent conducting oxide and electrospun nanowires to enhance the adhesion after the calcination. Then, we examined the potential of the technique on ZnO based dye-sensitized solar cells.
Keywords
ZnO; Nanowire; Electrospinning; Electrical grounding; DSSC;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. N. Shipway, E. Katz, and I. Willner, ChemPhysChem, 1, 1 (2000).   DOI
2 Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science, 293, 5533 (2001).
3 Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, and T. Sasaki, J. Am. Chem. Soc., 128 , 14 (2006).   DOI   ScienceOn
4 P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. J. Choi, Adv. Funct. Mater., 12, 5 (2002).
5 J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee, and X. M. Meng, Appl. Phys. Lett., 85, 12 (2004).
6 T. Thurn-Albrecht, J. Schotter, G. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, and T. P. Russell, Science, 290, 5499 (2000).
7 D. Li and Y. Xia, Adv. Mater., 16, 14 (2004).
8 A. Greiner and J. H. Wendorff, Angew. Chem.-Int. Edit., 46, 30 (2007).
9 S. W. Lee, H. J. Lee, J. H. Choi, W. G. Koh, J. M. Myoung, J. H. Hur, J. J. Park, J. H. Cho, and U. Jeong, Nano Lett., 10, 1 (2010).   DOI   ScienceOn
10 D. Li and Y. Xia, Nano Lett., 4, 5 (2004).   DOI   ScienceOn
11 Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, and A. Greiner, Adv. Mater., 15, 22 (2003).
12 I. D. Kim, J. M. Hong, B. H. Lee, D. Y. Kim, E. K. Jeon, D. K. Choi, and D. J. Yang, Appl. Phys. Lett., 91, 16 (2007).
13 R. Zhu, C. Y. Jiang, X. Z. Liu, B. Liu, A. Kumar, and S. Ramakrishna, Appl. Phys. Lett., 93, 1 (2008).
14 K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, and S. Uchida, Nanotechnology, 18, 36 (2007).
15 W. Zhang, R. Zhu, X. Liu, B. Liu, and S. Ramakrishna, Appl. Phys. Lett., 95, 4 (2009).
16 A. F. Lotus, Y. C. Kang, J. I. Walker, R. D. Ramsier, and G. G. Chase, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 166, 1 (2009).
17 E. Guillen, F. Casanueva, J. A. Anta, A. Vega-Poot, G. Oskam, R. Alcantara, C. Fernandez-Lorenzo, and J. Martin-Calleja, J. Photochem. Photobiol. A-Chem., 200, 2-3 (2008).
18 T. P. Chou, Q. Zhang, G. E. Fryxell, and G. Cao, Adv. Mater., 19, 18), (2007).
19 Q. Zhang, C. S. Dandeneau, X. Zhou, and C. Cao, Adv. Mater., 21, 41 (2009).