Browse > Article
http://dx.doi.org/10.1016/j.ijnaoe.2016.12.004

Survey of research on the optimal design of sea harbours  

Diab, Hassan (Charles Delaunay Institute, Mechanical System and Concurrent Engineering Laboratory (ICD-LASMIS), UMR CNRS 6281, University of Technologie of Troyes (UTT))
Younes, Rafic (Lebanese University, Faculty of Engineering)
Lafon, Pascal (Charles Delaunay Institute, Mechanical System and Concurrent Engineering Laboratory (ICD-LASMIS), UMR CNRS 6281, University of Technologie of Troyes (UTT))
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.9, no.4, 2017 , pp. 460-472 More about this Journal
Abstract
The design of harbours, as with any other system design, must be an optimization process. In this study, a global examination of the different constraints in coastal engineering was performed and an optimization problem was defined. The problem has multiple objectives, and the criteria to be minimized are the structure cost and wave height disturbance inside a harbour. As concluded in this survey, the constraints are predefined parameters, mandatory constraints or optional constraints. All of these constraints are categorized into four categories: environmental, fluid mechanical, structural and manoeuvring.
Keywords
Port management; Harbour; Optimization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yu, Y.-X., Liu, S.-X., Li, Y.S., Wai, O.W., 2000. Refraction and diffraction of random waves through breakwater. Ocean. Eng. 27, 489-509.   DOI
2 Zuo, S.-H., Zhang, N.-C., Li, B., Zhang, Z., Zhu, Z.-X., 2009. Numerical simulation of tidal current and erosion and sedimentation in the Yangshan deep-water harbor of Shanghai. Int. J. Sediment Res. 24, 287-298.   DOI
3 Zuo, S., Li, B., 2010. Study on hydrodynamic and sedimentation problems in development of harbors located at offshore area with many islands and tidal channels. J. Hydrodyn. Ser. B 22, 587-592. http://dx.doi.org/10.1016/S1001-6058(09)60257-2.   DOI
4 Zyserman, J.A., Johnson, H.K., Zanuttigh, B., Martinelli, L., 2005. Analysis of far-field erosion induced by low-crested rubble-mound structures. Coast. Eng. 52, 977-994. http://dx.doi.org/10.1016/j.coastaleng.2005.09.013.   DOI
5 Akoz, M.S., Cobaner, M., Kirkgoz, M.S., Oner, A.A., 2011. Prediction of geometrical properties of perfect breaking waves on composite breakwaters. Appl. Ocean Res. 33, 178-185. http://dx.doi.org/10.1016/j.apor.2011.03.003.   DOI
6 Silvester, R., 1978. What direction coastal engineering? Coast. Eng. 2, 327-349.   DOI
7 Hong, K.-S., Ngo, Q.H., 2012. Dynamics of the container crane on a mobile harbor. Ocean. Eng. 53, 16-24. http://dx.doi.org/10.1016/j.oceaneng.2012.06.013.   DOI
8 Hornby, A.S., Cowie, A.P., Hornby, A.S., 1989. Oxford advanced Learner's Dictionary of Current English. Oxford University Press, Oxford.
9 Hsu, W.-K.K., 2012. Ports' service attributes for ship navigation safety. Saf. Sci. 50, 244-252. http://dx.doi.org/10.1016/j.ssci.2011.08.057.   DOI
10 Hughes, S.A., Schwichtenberg, B.R., 1998. Current-induced scour along a breakwater at Ventura harbor, CA-experimental study. Coast. Eng. 34, 1-22.   DOI
11 Hu, J., Yu, Y., Zhu, L., 2006. Research on wave forces acting on the unit length of a vertical breakwater by tests and a numerical model. J. Hydrodyn. Ser. B 18, 512-519.   DOI
12 Hur, D.-S., Kim, C.-H., Yoon, J.-S., 2010. Numerical study on the interaction among a nonlinear wave, composite breakwater and sandy seabed. Coast. Eng. 57, 917-930. http://dx.doi.org/10.1016/j.coastaleng.2010.05.010.   DOI
13 Juul Jensen, O., Sorensen, T., 1979. Overspilling/overtopping of rubble-mound breakwaters. Results of studies, useful in design procedures. Coast. Eng. 3, 51-65. http://dx.doi.org/10.1016/0378-3839(79)90005-X.   DOI
14 Isebe, D., Azerad, P., Mohammadi, B., Bouchette, F., 2008. Optimal shape design of defense structures for minimizing short wave impact. Coast. Eng. 55, 35-46. http://dx.doi.org/10.1016/j.coastaleng.2007.06.006.   DOI
15 Isobe, M., 2013. Impact of global warming on coastal structures in shallow water. Ocean. Eng. 71, 51-57. http://dx.doi.org/10.1016/j.oceaneng.2012.12.032.   DOI
16 Jordi, A., Basterretxea, G., Casas, B., Angles, S., Garces, E., 2008. Seiche-forced resuspension events in a Mediterranean harbour. Cont. Shelf Res. 28, 505-515. http://dx.doi.org/10.1016/j.csr.2007.10.009.   DOI
17 Kirkgoz, M.S., 1992. Influence of water depth on the breaking wave impact on vertical and sloping walls. Coast. Eng. 18, 297-314.   DOI
18 Kantardgi, I., Mairanovsky, F., Sapova, N., 1995. Water exchange and water quality in the coastal zone in the presence of structures. Coast. Eng. 26, 207-223.   DOI
19 Kim, H., Do, K.D., Suh, K.-D., 2011. Scattering of obliquely incident water waves by partially reflecting non-transmitting breakwaters. Ocean. Eng. 38, 148-158. http://dx.doi.org/10.1016/j.oceaneng.2010.10.001.   DOI
20 Kirca, V.S.O., Kabdasli, M.S., 2009. Reduction of non-breaking wave loads on caisson type breakwaters using a modified perforated configuration. Ocean. Eng. 36, 1316-1331. http://dx.doi.org/10.1016/j.oceaneng.2009.09.003.   DOI
21 Ling, H.I., 2001. Recent applications of sliding block theory to geotechnical design. Soil Dyn. Earthq. Eng. 21, 189-197. http://dx.doi.org/10.1016/S0267-7261(01)00007-0.   DOI
22 Latham, J.-P., Van Meulen, J., Dupray, S., 2006. Prediction of in-situ block size distributions with reference to armourstone for breakwaters. Eng. Geol. 86, 18-36. http://dx.doi.org/10.1016/j.enggeo.2006.04.001.   DOI
23 Lebey, M., Rivoalen, E., 2002. Experimental study of the working principal and efficiency of a superposed inclined planes wave absorber. Ocean. Eng. 29, 1427-1440.   DOI
24 Lee, H.S., Kim, S.D., Wang, K.-H., Eom, S., 2009. Boundary element modeling of multidirectional random waves in a harbor with a rectangular navigation channel. Ocean. Eng. 36, 1287-1294. http://dx.doi.org/10.1016/j.oceaneng.2009.09.009.   DOI
25 Kamphuis, J.W., 2006. Coastal engineering-quo vadis? Coast. Eng. 53, 133-140. http://dx.doi.org/10.1016/j.coastaleng.2005.10.003.   DOI
26 Martinelli, L., Ruol, P., Zanuttigh, B., 2008. Wave basin experiments on floating breakwaters with different layouts. Appl. Ocean Res. 30, 199-207. http://dx.doi.org/10.1016/j.apor.2008.09.002.   DOI
27 Airoldi, L., Abbiati, M., Beck, M.W., Hawkins, S.J., Jonsson, P.R., Martin, D., Moschella, P.S., Sundelof, A., Thompson, R.C., Aberg, P., 2005. An ecological perspective on the deployment and design of low-crested and other hard coastal defence structures. Coast. Eng. 52, 1073-1087. http://dx.doi.org/10.1016/j.coastaleng.2005.09.007.   DOI
28 Airy, G.B., 1845. Tides and wave. In: Encyclopedia Metropolitana.
29 Alises, A., Molina, R., Gomez, R., Pery, P., Castillo, C., 2014. Overtopping hazards to port activities: application of a new methodology to risk management (POrt Risk MAnagement Tool). Reliab. Eng. Syst. Saf. 123, 8-20. http://dx.doi.org/10.1016/j.ress.2013.09.005.   DOI
30 Liu, Y., Li, Y., 2011. Wave interaction with a wave absorbing double curtain-wall breakwater. Ocean. Eng. 38, 1237-1245. http://dx.doi.org/10.1016/j.oceaneng.2011.05.009.   DOI
31 Massel, S.R., 1993. Extended refraction-diffraction equation for surface waves. Coast. Eng. 19, 97-126.   DOI
32 Morgan Young, D., Testik, F.Y., 2011. Wave reflection by submerged vertical and semicircular breakwaters. Ocean. Eng. 38, 1269-1276. http://dx.doi.org/10.1016/j.oceaneng.2011.05.003.   DOI
33 Bates, P.D., Dawson, R.J., Hall, J.W., Horritt, M.S., Nicholls, R.J., Wicks, J., Hassan, M.A.A.M., 2005. Simplified two-dimensional numerical modelling of coastal flooding and example applications. Coast. Eng. 52, 793-810. http://dx.doi.org/10.1016/j.coastaleng.2005.06.001.   DOI
34 Battjes, J.A., 2006. Developments in coastal engineering research. Coast. Eng. 53, 121-132. http://dx.doi.org/10.1016/j.coastaleng.2005.10.002.   DOI
35 Belibassakis, K.A., Athanassoulis, G.A., 2002. Extension of second-order Stokes theory to variable bathymetry. J. Fluid Mech. 464, 35-80. http://dx.doi.org/10.1017/S0022112002008753.   DOI
36 McCabe, M.V., Stansby, P.K., Apsley, D.D., 2013. Random wave runup and overtopping a steep sea wall: shallow-water and Boussinesq modelling with generalised breaking and wall impact algorithms validated against laboratory and field measurements. Coast. Eng. 74, 33-49. http://dx.doi.org/10.1016/j.coastaleng.2012.11.010.   DOI
37 Michailides, C., Angelides, D.C., 2012. Modeling of energy extraction and behavior of a flexible floating breakwater. Appl. Ocean Res. 35, 77-94. http://dx.doi.org/10.1016/j.apor.2011.11.004.   DOI
38 Neelamani, S., Rajendran, R., 2002a. Wave interaction with "ㅗ"-type breakwaters. Ocean. Eng. 29, 561-589.   DOI
39 Neelamani, S., Rajendran, R., 2002b. Wave interaction with T-type breakwaters. Ocean. Eng. 29, 151-175.   DOI
40 Ohtsu, K., Shoji, K., Okazaki, T., 1996. Minimum-time maneuvering of a ship, with wind disturbances. Control Eng. Pract. 4, 385-392.   DOI
41 Boussinesq, J., 1872. Theorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17, 55-108.
42 Berkhoff, J.C.W., 1976. Mathematical Models for Simple Harmonic Linear Water Waves: Wave Diffraction and Refraction (Ph.D. thesis) - Tech. Hogeschool Delft, Neth.. Delft Hydraulics Lab, Netherlands.
43 Bosworth, G.F., 1915. Ships, Shipping and Fishing ;: with Some Account of Our Seaports and Their Industries. University Press, Cambridge.
44 Bouma, J.J., Francois, D., Schram, A., Verbeke, T., 2009. Assessing socio-economic impacts of wave overtopping: an institutional perspective. Coast. Eng. 56, 203-209. http://dx.doi.org/10.1016/j.coastaleng.2008.03.008.   DOI
45 Bowman, D., Pranzini, E., 2003. Reversed responses within a segmented detached breakwater, the Tuscany coast Italy-a case study. Coast. Eng. 49, 263-274. http://dx.doi.org/10.1016/S0378-3839(03)00063-2.   DOI
46 Bruce, T., van der Meer, J.W., Franco, L., Pearson, J.M., 2009. Overtopping performance of different armour units for rubble mound breakwaters. Coast. Eng. 56, 166-179. http://dx.doi.org/10.1016/j.coastaleng.2008.03.015.   DOI
47 Ondiviela, B., Gomez, A.G., Puente, A., Juanes, J.A., 2013. A pragmatic approach to define the ecological potential of water bodies heavily modified by the presence of ports. Environ. Sci. Policy 33, 320-331. http://dx.doi.org/10.1016/j.envsci.2013.07.001.   DOI
48 Oumeraci, H., 1994. Review and analysis of vertical breakwater failures-lessons learned. Coast. Eng. 22, 3-29.   DOI
49 Breitkopf, P., Coelho, R.F. (Eds.), 2010. Multidisciplinary Design Optimization in Computational Mechanics. ISTE . John Wiley & Sons, London, UK ;: Hoboken, NJ.
50 Briganti, R., Dodd, N., 2009. On the role of shoreline boundary conditions in wave overtopping modelling with non-linear shallow water equations. Coast. Eng. 56, 1061-1067. http://dx.doi.org/10.1016/j.coastaleng.2009.06.011.   DOI
51 Bruun, P., Kjelstrup, S., 1981. Practical views on the design and construction of mound breakwaters. Coast. Eng. 5, 171-192. http://dx.doi.org/10.1016/0378-3839(81)90014-4.   DOI
52 Piccoli, C., 2014. Economic Optimization of Breakwaters-Case Study: Maintenance of Port of Constantza's Northern Breakwater. TU Delft, Delft University of Technology.
53 Elsharnouby, B., Soliman, A., Elnaggar, M., Elshahat, M., 2012. Study of environment friendly porous suspended breakwater for the Egyptian Northwestern Coast. Ocean. Eng. 48, 47-58. http://dx.doi.org/10.1016/j.oceaneng.2012.03.012.   DOI
54 Filianoti, P., 2000. Diffraction of random wind-generated waves by detached breakwater or breakwater gap. Ocean. Eng. 27, 1249-1263. http://dx.doi.org/10.1016/S0029-8018(99)00044-X.   DOI
55 Franco, L., 1994. Vertical breakwaters: the Italian experience. Coast. Eng. 22, 31-55.   DOI
56 Patil, S.G., Mandal, S., Hegde, A.V., 2012. Genetic algorithm based support vector machine regression in predicting wave transmission of horizontally interlaced multi-layer moored floating pipe breakwater. Adv. Eng. Softw. 45, 203-212. http://dx.doi.org/10.1016/j.advengsoft.2011.09.026.   DOI
57 Pena, E., Ferreras, J., Sanchez-Tembleque, F., 2011. Experimental study on wave transmission coefficient, mooring lines and module connector forces with different designs of floating breakwaters. Ocean. Eng. 38, 1150-1160. http://dx.doi.org/10.1016/j.oceaneng.2011.05.005.   DOI
58 Pierson, W.J., Neumann, G., James, R.W., 1955. Practical Methods for Observing and Forecasting Ocean Waves by Means of Wave Spectra and Statistics. Pub. No. 603. US Navy Hydrographic Office.
59 Puertos del Estado (Espana), 2007. ROM 3.1-99: Recommendations for the Design of the Maritime Configuration of Ports, Approach Channels and Harbour Basins. Puertos del Estado, Madrid.
60 Putnam, J.A., Johson, J.W., 1949. The dissipation of wave energy by bottom friction. Trans. Am. Geophys. Union 30, 67. http://dx.doi.org/10.1029/TR030i001p00067.   DOI
61 Rakha, K.A., Kamphuis, J.W., 1997. Wave-induced currents in the vicinity of a seawall. Coast. Eng. 30, 23-52.   DOI
62 Gunaydin, K., Kabdasli, M., 2004. Performance of solid and perforated U-type breakwaters under regular and irregular waves. Ocean. Eng. 31, 1377-1405. http://dx.doi.org/10.1016/j.oceaneng.2004.02.002.   DOI
63 Burt, J.A., Feary, D.A., Cavalcante, G., Bauman, A.G., Usseglio, P., 2013. Urban breakwaters as reef fish habitat in the Persian Gulf. Mar. Pollut. Bull. 72, 342-350. http://dx.doi.org/10.1016/j.marpolbul.2012.10.019.   DOI
64 Burt, J., Bartholomew, A., Bauman, A., Saif, A., Sale, P.F., 2009. Coral recruitment and early benthic community development on several materials used in the construction of artificial reefs and breakwaters. J. Exp. Mar. Biol. Ecol. 373, 72-78. http://dx.doi.org/10.1016/j.jembe.2009.03.009.   DOI
65 Franco, L., Lamberti, A., Noli, A., Tomasicchio, U., 1986. Evaluation of risk applied to the designed breakwater of Punta Riso at Brindisi, Italy. Coast. Eng. 10, 169-191.   DOI
66 Galor, W., 2007. The effect of ship's impact on sea bed in shallow water. Arch. Civ. Mech. Eng. 7, 105-114.   DOI
67 Gesraha, M.R., 2006. Analysis of shaped floating breakwater in oblique waves: I. Impervious rigid wave boards. Appl. Ocean Res. 28, 327-338. http://dx.doi.org/10.1016/j.apor.2007.01.002.   DOI
68 Gunaydin, K., Kabdasli, M.S., 2007. Investigation of P-type breakwaters performance under regular and irregular waves. Ocean. Eng. 34, 1028-1043. http://dx.doi.org/10.1016/j.oceaneng.2006.03.015.   DOI
69 Hardaway, C.S., Gunn, J.R., 2010. Design and performance of headland bays in Chesapeake Bay, USA. Coast. Eng. 57, 203-212. http://dx.doi.org/10.1016/j.coastaleng.2009.10.007.   DOI
70 Hattori, M., Arami, A., Yui, T., 1994. Wave impact pressure on vertical walls under breaking waves of various types. Coast. Eng. 22, 79-114.   DOI
71 Burcharth, H.F., Sorensen, J.D., 2006. On optimum safety levels of breakwaters. In: Proceedings of the 31st PIANC Congress, Estoril, Portugal.
72 Rusu, E., Guedes Soares, C., 2011. Wave modelling at the entrance of ports. Ocean. Eng. 38, 2089-2109. http://dx.doi.org/10.1016/j.oceaneng.2011.09.002.   DOI
73 Cai, F., Su, X., Liu, J., Li, B., Lei, G., 2009. Coastal erosion in China under the condition of global climate change and measures for its prevention. Prog. Nat. Sci. 19, 415-426. http://dx.doi.org/10.1016/j.pnsc.2008.05.034.   DOI
74 Castillo, C., Minguez, R., Castillo, E., Losada, M.A., 2006. An optimal engineering design method with failure rate constraints and sensitivity analysis. Application to composite breakwaters. Coast. Eng. 53, 1-25. http://dx.doi.org/10.1016/j.coastaleng.2005.09.016.   DOI
75 Cavaleri, L., Alves, J.-H.G.M., Ardhuin, F., Babanin, A., Banner, M., Belibassakis, K., Benoit, M., Donelan, M., Groeneweg, J., Herbers, T.H.C., Hwang, P., Janssen, P.A.E.M., Janssen, T., Lavrenov, I.V., Magne, R., Monbaliu, J., Onorato, M., Polnikov, V., Resio, D., Rogers, W.E., Sheremet, A., McKee Smith, J., Tolman, H.L., van Vledder, G., Wolf, J., Young, I., 2007. Wave modelling - the state of the art. Prog. Oceanogr. 75, 603-674. http://dx.doi.org/10.1016/j.pocean.2007.05.005.   DOI
76 Chaves, L.P., Cunha, J., 2014. Design of carbon fiber reinforcement of concrete slabs using topology optimization. Constr. Build. Mater. 73, 688-698. http://dx.doi.org/10.1016/j.conbuildmat.2014.10.011.   DOI
77 Seo, M.-G., Kim, Y., 2011. Numerical analysis on ship maneuvering coupled with ship motion in waves. Ocean. Eng. 38, 1934-1945. http://dx.doi.org/10.1016/j.oceaneng.2011.09.023.   DOI
78 Sasa, K., Incecik, A., 2012. Numerical simulation of anchored ship motions due to wave and wind forces for enhanced safety in offshore harbor refuge. Ocean. Eng. 44, 68-78. http://dx.doi.org/10.1016/j.oceaneng.2011.11.006.   DOI
79 Schelfn, T.E., Ostergaard, C., 1995. The vessel in port: mooring problems. Mar. Struct. 8, 451-479.   DOI
80 Schuttrumpf, H., Oumeraci, H., 2005. Layer thicknesses and velocities of wave overtopping flow at seadikes. Coast. Eng. 52, 473-495. http://dx.doi.org/10.1016/j.coastaleng.2005.02.002.   DOI
81 Shankar, N.J., Jayaratne, M.P.R., 2003. Wave run-up and overtopping on smooth and rough slopes of coastal structures. Ocean. Eng. 30, 221-238.   DOI
82 Spataru, A.N., 1990. Breakwaters for the protection of Romanian beaches. Coast. Eng. 14, 129-146.   DOI
83 Stokes, G.G., 1847. On the theory of oscillatory waves. Trans. Camb. Philos. Soc. 8, 441-455.
84 Suh, K.-D., Kim, S.-W., Kim, S., Cheon, S., 2013. Effects of climate change on stability of caisson breakwaters in different water depths. Ocean. Eng. 71, 103-112. http://dx.doi.org/10.1016/j.oceaneng.2013.02.017.   DOI
85 Tanimoto, K., Takahashi, S., 1994. Design and construction of caisson breakwaters-the Japanese experience. Coast. Eng. 22, 57-77.   DOI
86 Teisson, C., 1990. Statistical approach of duration of extreme storms: consequences on breakwater damages. In: Presented at the Coastal Engineering, ASCE, pp. 1851-1860.
87 Cihan, K., Yuksel, Y., Berilgen, M., Cevik, E.O., 2012. Behavior of homogenous rubble mound breakwaters materials under cyclic loads. Soil Dyn. Earthq. Eng. 34, 1-10. http://dx.doi.org/10.1016/j.soildyn.2011.10.009.   DOI
88 Chin, H.C., Debnath, A.K., 2009. Modeling perceived collision risk in port water navigation. Saf. Sci. 47, 1410-1416. http://dx.doi.org/10.1016/j.ssci.2009.04.004.   DOI
89 Chini, N., Stansby, P., Leake, J., Wolf, J., Roberts-Jones, J., Lowe, J., 2010. The impact of sea level rise and climate change on inshore wave climate: a case study for East Anglia (UK). Coast. Eng. 57, 973-984. http://dx.doi.org/10.1016/j.coastaleng.2010.05.009.   DOI
90 Cihan, K., Yuksel, Y., 2011. Deformation of rubble-mound breakwaters under cyclic loads. Coast. Eng. 58, 528-539. http://dx.doi.org/10.1016/j.coastaleng.2011.02.002.   DOI
91 Cooper, J.A.G., McKenna, J., 2008. Social justice in coastal erosion management: the temporal and spatial dimensions. Geoforum 39, 294-306. http://dx.doi.org/10.1016/j.geoforum.2007.06.007.   DOI
92 Creel, L., 2003. Ripple Effects: Population and Coastal Regions. Population Reference Bureau.
93 Dean, R.G., Chen, R., Browder, A.E., 1997. Full scale monitoring study of a submerged breakwater, Palm Beach, Florida, USA. Coast. Eng. 29, 291-315.   DOI
94 De Girolamo, P., 1996. An experiment on harbour resonance induced by incident regular waves and irregular short waves. Coast. Eng. 27, 47-66.   DOI
95 De Graauw, A., 1986. Wave statistics based on ship's observations. Coast. Eng. 10, 105-118.   DOI
96 de Haan, W., 1991. Deterministic computer-aided optimum design of rock rubble-mound breakwater cross-sections. Coast. Eng. 15, 3-19.   DOI
97 Weng, W., Kuo, Y., Chou, C.-R., 1996. Analysis of forces due to irregular waves exerted on a ship near a harbor entrance. Mar. Struct. 9, 609-629.   DOI
98 Diab, H., Lafon, P., Younes, R., 2014. Optimisation of breakwaters design to protect offshore terminal area. In: Presented at the the 5th IASTED International Conference on Modelling, Simulation and Identification-2014, Banff, Canada. http://dx.doi.org/10.2316/P.2014.820-023.
99 van der Meer, J.W., Verhaeghe, H., Steendam, G.J., 2009. The new wave overtopping database for coastal structures. Coast. Eng. 56, 108-120. http://dx.doi.org/10.1016/j.coastaleng.2008.03.012.   DOI
100 Vidal, C., Medina, R., Lomonaco, P., 2006. Wave height parameter for damage description of rubble-mound breakwaters. Coast. Eng. 53, 711-722. http://dx.doi.org/10.1016/j.coastaleng.2006.02.007.   DOI
101 World Resources Institute, United Nations Environment Programme, United Nations Development Programme, 1992. World Resources 1992-93: a Report. Oxford University Press, New York.
102 Xie, M., Zhang, W., 2010. Numerical study on the three-dimensional characteristics of the tidal current around harbor entrance. J. Hydrodyn. Ser. B 22, 847-855. http://dx.doi.org/10.1016/S1001-6058(09)60125-6.   DOI
103 Yang, C., Lu, H., Lohner, R., 2010. On the simulation of highly nonlinear wave-breakwater interactions. J. Hydrodyn. Ser. B 22, 975-981. http://dx.doi.org/10.1016/S1001-6058(10)60061-3.   DOI
104 Yavin, Y., Frangos, C., Zilman, G., Miloh, T., 1995. Computation of feasible command strategies for the navigation of a ship in a narrow zigzag channel. Comput. Math. Appl. 30, 79-101.
105 Yeganeh-Bakhtiary, A., Hajivalie, F., Hashemi-Javan, A., 2010. Steady streaming and flow turbulence in front of vertical breakwater with wave overtopping. Appl. Ocean Res. 32, 91-102. http://dx.doi.org/10.1016/j.apor.2010.03.002.   DOI
106 Tomasicchio, G.R., D'Alessandro, F., Barbaro, G., Malara, G., 2013. General longshore transport model. Coast. Eng. 71, 28-36. http://dx.doi.org/10.1016/j.coastaleng.2012.07.004.   DOI
107 Elchahal, G., Lafon, P., Younes, R., 2008a. Comparing various methods for topology and shape optimization of floating breakwaters. WSEAS Trans. Fluid Mech. 3, 186-199.
108 Dong, G., Gao, J., Ma, X., Wang, G., Ma, Y., 2013. Numerical study of low-frequency waves during harbor resonance. Ocean. Eng. 68, 38-46. http://dx.doi.org/10.1016/j.oceaneng.2013.04.020.   DOI
109 Du, Y., Pan, S., Chen, Y., 2010. Modelling the effect of wave overtopping on nearshore hydrodynamics and morphodynamics around shore-parallel breakwaters. Coast. Eng. 57, 812-826. http://dx.doi.org/10.1016/j.coastaleng.2010.04.005.   DOI
110 Elchahal, G., Lafon, P., Younes, R., 2009a. Design optimization of floating breakwaters with an interdisciplinary fluid-solid structural problem. Can. J. Civ. Eng. 36, 1732-1743. http://dx.doi.org/10.1139/L09-095.   DOI
111 Elchahal, G., Younes, R., Lafon, P., 2013. Optimization of coastal structures: application on detached breakwaters in ports. Ocean. Eng. 63, 35-43. http://dx.doi.org/10.1016/j.oceaneng.2013.01.021.   DOI
112 Elchahal, G., Younes, R., Lafon, P., 2009b. Parametrical and motion analysis of a moored rectangular floating breakwater. J. Offshore Mech. Arct. Eng. 131, 1-11. http://dx.doi.org/10.1115/1.3124125.   DOI
113 Elchahal, G., Younes, R., Lafon, P., 2008b. The effects of reflection coefficient of the harbour sidewall on the performance of floating breakwaters. Ocean. Eng. 35, 1102-1112. http://dx.doi.org/10.1016/j.oceaneng.2008.04.015.   DOI
114 Elchahal, G., Younes, R., Lafon, P., 2006. Shape and material optimization of a 2D vertical floating breakwater. WSEAS Trans. Fluid Mech. 1, 355-362.